Effects of Heat Treatments on the Antioxidant Activities of Fruits and Vegetables

과채류의 항산화 활성에 미치는 열처리 효과

  • Kim, Hyun-Young (Department of Food Science and Technology, Chungbuk National University) ;
  • Woo, Koan-Sik (Department of Food Science and Technology, Chungbuk National University) ;
  • Hwang, In-Guk (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Youn-Ri (Department of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University)
  • Published : 2008.04.30

Abstract

The effects of heat treatments on the antioxidant activities of selected fruits and vegetables were investigated by heating at various temperatures (110, 120, 130, 140, and 150$^{\circ}C$) for 2 hr. The examined fruits and vegetables included tomatoes (Lycopersicon esculentum), oriental melon (Cucumis melon var. makuwa), apples (Malus pumila Miller var. domestica Schneider), melon (Cucumis melon), watermelon (Citrullus vulgaris), and banana (Musa sapientum). The total polyphenol and total flavonoid contents of the juices from heated samples were quantified spectrophotometrically, and their antioxidant activities were determined using DPPH and ABTS radicals. As the heating temperature increased, antioxidant activity also increased. The highest total polyphenol content (2.80 mg/g) occurred in the oriental melon with heating at 150$^{\circ}C$, and this value was 7 times higher than that of the untreated oriental melon (0.40 mg/g). The highest total flavonoid content (148.80 ${\mu}$g/g) occurred in the melon heat treated at 150$^{\circ}C$, and this value was 37 times higher than that of the untreated melon (4.54 ${\mu}$g/g). DPPH radical-scavenging activity was the highest in the watermelon treated at 150$^{\circ}C$ (84.37%, 0.50 mg/g), and this value was 40 times higher than that of the untreated watermelon. Finally, the highest ascorbic acid (AA) equivalent antioxidant capacity (AEAC) value (239.50 mg AA eq/g) was obtained in the watermelon heat treated at 150$^{\circ}C$ for 2 hr (control = 18.35 mg AA eq/g).

열처리가 과채류의 유용성분 변화와 항산화 활성에 미치는 영향을 살펴보기 위하여 멜론, 사과, 토마토, 참외 및 수박을 시료 로 110, 120, 130, 140 및 150$^{\circ}C$에서 2시간 열처리한 후 총 폴리페놀 및 플라보노이드 함량 그리고 전자공여능(EDA) 및 총항산화력(AEAC)을 측정하였다. 총 폴리페놀 함량은 6가지 과채류 모두 온도가 증가함에 따라 증가하였으며, 참외의 경우 무처리에서 0.40 mg/g이었던 것이 150$^{\circ}C$에서는 2.80 mg/g으로 증가하였다. 총 플라보노이드 함량도 열처리온도의 증가에 따라 증가하였으며 무처리 멜론에서 4.54 ${\mu}$g/g이었던 것이 150$^{\circ}C$에서는 148.80${\mu}$g/g으로 무처리 멜론보다 약 37배 이상 증가하였다. 또한 DPPH assay에서 항산화 활성은 열처리온도가 증가함에 따라 증가하였으며, 수박의 경우 110$^{\circ}C$ 처리에서는 4.52%(500 ${\mu}$g/mL)이었던 것이 150$^{\circ}C$ 처리에서 84.37%(500 ${\mu}$g/mL)로 증가하였다. 총 항산화력도 모든 열처리 시료에서 무처리 시료보다 높게 나타났으며, 무처리 멜론에서 0.51 mg AA eq/100 g이었던 것이 150$^{\circ}C$에서는 12.95 mg AA eq/100g으로 증가하였다.

Keywords

References

  1. Jeong SM, Son MH, Lee SC. A survey on contents of phenolic compounds of market fruit and vegetables juices. J. Basic Sci. 18: 117-123 (2003)
  2. Jo JS, Do JR, Koo JG. Pretreatment conditions of Porphyayezoensis, Undaria pinnatifida and Laminaria religiosa for functional alage-tea. J. Korean Soc. Food Sci. Nutr. 27: 275-280 (1998)
  3. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhance the nutritional values of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50: 3010-3014 (2002) https://doi.org/10.1021/jf0115589
  4. Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381-387 (2006) https://doi.org/10.1016/j.foodchem.2005.08.004
  5. Yang SJ, Woo KS, Yoo JS, Kang TS, Noh YH, Lee JS, Jeong HS. Change of Korean ginseng components with high temperature and pressure treatment. Korean J. Food Sci. Tecnnol. 38: 521-525 (2006)
  6. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS. Antioxidative activity of heat treated licorice (Glycyrrhiz uralensis Fisch) extracts. Korean J. Food Sci. Tecnnol. 38: 355-360 (2006)
  7. Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. Change of physocichemical characteristics of Korean pear (Pyrus pyrifolia Nskai) juice with heat treatment condition. Korean J. Food Sci. Technol. 38: 342-347 (2006)
  8. Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 331-336 (2006)
  9. Dewanto V, Xianzhong W, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 50: 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  10. Jeong SM, Kim SY, Kim DR, Jo SC, Nam KC, Ahn DU, Lee SC. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem. 52: 3389-3393 (2004) https://doi.org/10.1021/jf049899k
  11. Yildiz F, Westhoff D. Associative growth of lactic acid bacteria in cabbage juice. J. Food Sci. 46: 962-963 (1995) https://doi.org/10.1111/j.1365-2621.1981.tb15397.x
  12. Dewanto V, Xianzhong W, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 50: 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  13. Choi Y, Kim MH, Shin JJ, Park JM, Lee J. The antioxidant activities of the some commercial teas. J. Korean Soc. Food Sci. Nutr. 32: 723-727 (2003) https://doi.org/10.3746/jkfn.2003.32.5.723
  14. Lee SC, Jeong SM, Kim SY, Park HR, Nam KC, Ahn DU. Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls. J. Agric. Food Chem. 94: 489-493 (2006) https://doi.org/10.1016/j.foodchem.2004.12.001
  15. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. Review of non-enzymatic browning and antioxidant capacity in processed food. Trends Food Sci. Technol. 11: 340-346 (2001) https://doi.org/10.1016/S0924-2244(01)00014-0
  16. Turkmen N, Sari F, Velioglu YS. The effect of cooking methods total pheolics and antioxidant activity of selected green vegetables. J. Agric. Food Chem. 93: 713-718 (2005) https://doi.org/10.1016/j.foodchem.2004.12.038