Characteristics of Lactic Acid Fermentation of Peach Juice by Lactobacillus plantarum KLAB21 Possessing Antimutagenic Effects

항돌연변이원성 Lactobacillus plantarum KLAB21에 의한 복숭아 주스의 젖산발효 특성

  • Lee, Yong-Ho (Department of Food Science and Technology, Kyungpook National University) ;
  • Choi, Sang-Won (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Park, Heui-Dong (Department of Food Science and Technology, Kyungpook National University)
  • 이용호 (경북대학교 식품공학과) ;
  • 최상원 (대구가톨릭대학교 식품영양학과) ;
  • 박희동 (경북대학교 식품공학과)
  • Published : 2008.06.30

Abstract

Lactic acid fermentation of peach juice was carried out by using Lactobacillus plantarum KLAB21, a strain with a high level of antimutagenic activity, When the fermentation was carried out at 25, 30, 37 and $40^{\circ}C$, the highest level in the viable counts and acid production was obtained at $37^{\circ}C$. The sterilized peach juice showed a higher level of viable counts and acid production than the non-sterilized juice. And more viable counts and acid production were observed in the juice fermented by L. plantarum KLAB21 only than that obtained by a mixed culture of L. plantarum KLAB21 and Leuconostoc mesenteroides cells. When the lactic acid fermentation was performed for 5 days, the first 3 days of fermentation resulted in an increase of the viable counts from 8.2 to of 9.2 of log cfu/mL which is the highest level, as well as a decrease of the residual reducing sugar content from 5.6 to 0.1 % Decrease in the viable counts and m significant changes in the residual reducing sugar content were observed for further fermentation up to 5 days. However, the titratable acid content increased and the pH value decreased during the fermentation for 5 days to reach the highest titratable acid content (1,98%) and the lowest pH value (3.14) after 5 days of fermentation. HPLC analysis of the organic acids showed 1,236 mg% of lactic acid and 841 mg% of galacturonic acid contents in the fermented juice which were not detected in the fresh juice before fermentation. Antimutagenic effects of $100\;{\mu}L$ of the fermented peach juice supernatant were shown to be 97.7% against MNNG(N-methyl-N'-nitro-N-nitrosoguanidine), and 58.3% against NPD(4-nitro-O-phenylenediamine) in Salmonella enterica serovar Typhimurium TA100.

복숭아를 원료로 하여 항돌연변이원성이 강한 것으로 알려진 L. plantaum KLAB21 균주에 의한 젖산발효 주스의 제조 가능성과 젖산발효 특성을 조사하였다. 젖산발효에 미치는 온도의 효과를 조사한 결과 $37^{\circ}C$에서 25, 30, $40^{\circ}C$에서 보다 더욱 높은 생균수의 증가와 적정산도를 나타내었다. 살균하지 않은 복숭아 주스보다는 저온에서 살균한 주스가 젖산발효에 더욱 적합한 것으로 나타났다. 또한 L. plantaum KLAB21 균주 단독발효의 경우가 L. plantaum KLAB21 및 L. mesenteroides 두 균주의 혼합발효 경우보다 젖산발효가 큰 차이는 없었으나 다소 양호하였다. 발효시간에 따른 젖산발효 특성을 조사한 결과 발효 3일 동안에 대부분의 환원당이 소모되었으며 발효 3일 후 9.2 log cfu/mL로서 가장 높은 생균수를 나타낸 후 발효가 진행되면서 생균수는 오히려 감소하여 5일 후에는 8.4 log cfu/mL을 나타내었다. 발효 중 적정산도는 초기에 급격히 증가하였으나 점차 증가폭이 둔해졌으며 발효 5일 후의 적정산도는 1.98%이었다. pH는 발효가 진행되면서 초기 3.9에서부터 발효 5일 후에는 3.1까지 감소하였다. 발효 주스의 유기산 조성은 발효 전 복숭아 주스에서는 전혀 검출되지 않았던 젖산이 1.236.1mg%로 전체 유기산의 약 56.6%를 차지하여 가장 높았으며 발효 전 검출되지 않았던 갈락투론산은 발효 후 840.5mg%로서 전체 유기산의 38.5%를 차지하였다. 또한 92.3mg%의 사과산과 소량의 구연산 및 초산이 검출되었다. S. enterica serovar Typhimurium TA100을 사용하여 발효 주스 원심분리 상징액 $100\;{\mu}L$의 항돌연변이 활성을 조사한 결과 MNNG(N-methyl-N'-nitro-N-nitrosoguanidine)에 대하여 97.7%, NPD(4-nitro-O-phenylenediamine)에 대하여는 58.3%의 활성을 나타내었다.

Keywords

References

  1. Salminen, S., von Wright, A., Ouwehand, A. (2004) Lactic acid bacteria: microbiological and functional aspects. Marcel Dekker, Inc., New York, U.S.A
  2. Ingram, M. (1975) The lactic acid bacteria: a broad view. In: Lactic acid bacteria in beverages and food. Carr, J.C., Cutting, C.V., Whiting, G.C.(Editor), Academic Press, London, UK
  3. Gibson, G.R. and Roberfroid, M.B. (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 125, 1401-1412
  4. Sanders, M.A. (1998) Overview of functional foods: emphasis on probiotic bacteria. Int. Dairy J., 8, 341-347 https://doi.org/10.1016/S0958-6946(98)00056-9
  5. Metchnikoff, E. (1908) The prolongation of life. Putanama's Sons, New York. U.S.A
  6. Kellog, J.H. (1934) Method of making acidphilus milk. U.S. Patent 1982, 9941
  7. Yoon, T.j., Yoo, Y.C., Kang, T.B., Lee, K.H., Kwak, J.H., Baek, Y.J., Huh, C.S. and Kim, J.B., (1999) Fermented extracts of Korean mistletoe with Lactobacillus FKM-110 stimulate macrophage and inhibit tumor metastasis, Korean J. Food Sci. Technol, 31, 838-847
  8. Kim, J.H. and Kim, J.I. (1999) Processing of radish juice by mixed culture with lactic acid bacteria. Korean J. Postharvest Sci. Technol., 6, 448-455
  9. Bae, H.C., Paik, S.H. and Nam, M.S. (2004) Animal products and processing: fermentation properties of rice added yogurt made with various lactic acid bacteria. Korean J. Food Sci. Anim. Resour., 46, 677-686
  10. Jin, H.S., Choi, Y.S. and Lee, K.J. (2001) Development of a fermented food product using chestnut broth and mixed cultures of lactic acid bacteria. J. Korean Soc. Food Sci. Nutr., 14, 217-221
  11. Cerning, J. (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol., 87, 113-130 https://doi.org/10.1111/j.1574-6968.1990.tb04883.x
  12. Sandine, W.E., Muralidhara, K.S., Elliker, P.R and England, D.C. (1972) Lactic acid bacteria in food and health: a review with special reference to enteropathogenic Escherichia coli as well as certain enteric diseases and their treatment with antibiotics and lactobacilli. J. Milk Food Technol., 35, 691-702 https://doi.org/10.4315/0022-2747-35.12.691
  13. Eijsink, V.G.H., Skeie, M., Middelhoven, P. H., Brurberg, M.B. and Nes, I.F. (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol., 64, 3275-3281
  14. Adams, M.R. and Hall, C.J. (1988) Growth inhibition of food borne pathogens by lactic and acetic acids and their mixtures. Int. J. Food Sci. Technol., 23, 287-292
  15. Sandine, W.E. (1979) Roles of Lactobacillus in the intestinal tract. J. Food Prot., 42, 259-264 https://doi.org/10.4315/0362-028X-42.3.259
  16. Guarner, F. and Malagelada, J.R. (2003) Gut flora in health and disease. Lancet, 361, 512-519 https://doi.org/10.1016/S0140-6736(03)12489-0
  17. Alm, L. (1982) Effect of fermentation of lactose, glucose and lactose content milk and suitability of fermented milk products for lactose intolerant individuals. J. Dairy Sci., 63, 346-351
  18. Kunji, E.R.S., Mierau, I., Hagting, A., Poolman, B. and Konings, W.N. (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek, 76, 217-246
  19. Shun, Y.L., Ayres, J.A., Winkler, W. and Sandine, W.E. (1989) Lactobacillus effect on cholesterol: in vitro and in vivo results. J. Dairy Sci., 72, 2884-2889
  20. Agerholm-Larsen, L., Bell, M.L., Grunwald, G.K. and Astrup, A. (2000) The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short term intervention studies. Eur. J. Clin. Nutr., 54, 856-860 https://doi.org/10.1038/sj.ejcn.1601104
  21. Perdigon, G., de Macias, M.E., Alvarez, S., Oliver, G. and de Ruiz-Holgado, A.P. (1988) Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunol., 63, 17-23
  22. ernandes, C.F. and Shahani, K.M. (1990) Anti-carcinogenic and immunological properties of dietary lactobacilli. J. Food Prot., 53, 704-710 https://doi.org/10.4315/0362-028X-53.8.704
  23. Shimizu, T., Nomoto, K., Yokokawa, T. and Mutai, M. (1987) Role of colony stimulating activity in anti-tumor activity of Lactobacillus casei in mice. J. Leukoc. Biol., 42, 204-212 https://doi.org/10.1002/jlb.42.3.204
  24. Adachi, S. (1992) Lactic acid bacteria and the control of tumors. In: The lactic acid bacteria, Vol I, Wood, B.J.B.(Editor), Elsevier Applied Science, London, England, p.233-261
  25. Kelkar, S.M., Shenoy, M.A. and Kaklij, G.S. (1988) Anti-tumor activity of lactic acid bacteria on solid fibrosarcoma, sarcoma-180 and Ehrlich ascites carcinoma. Cancer Lett., 42, 73-77 https://doi.org/10.1016/0304-3835(88)90241-8
  26. osono, A., Wardojo, R. and Otani, H. (1990) Inhibitory effects of lactic acid bacteria from fermented milk on the mutagenicities of volatile nitrosamines. Agric. Biol. Chem., 54, 1639-1643 https://doi.org/10.1271/bbb1961.54.1639
  27. Hosono, A., Shashikanth, K.N. and Otani, H. (1988) Des-mutagenic property of cell wall of Streptococcus faecalis on the mutagenicities induced by amino acid pyrolyzates. J. Dairy Res., 55, 435-442 https://doi.org/10.1017/S0022029900028685
  28. Nishioka, K., Miyamoto, T., Kataoka, K. and Nakae, T. (1989) Preliminary studies on antimutagenic activities of lactic acid bacteria. Jpn. J. Zootech. Sci., 60, 491-494
  29. Park, H.D. and Rhee, C.H. (2001) Antimutagenic activity of Lactobacillus plantarum KLAB21 isolated from Korean fermented vegetablesm kimchi. Biotechnol. Lett., 23, 1583-1589 https://doi.org/10.1023/A:1011921427581
  30. Bogdanov, I.G., Dalev, P.G., Gurevich, L.A., Kolosov, M.N., Malkove, V.P., Plemyannikova, L.A. and Sorokina, I.B. (1975) Anti-tumor glycopeptides from Lactobacillus bulgaricus cell wall. FEBS Lett., 57, 259-261 https://doi.org/10.1016/0014-5793(75)80312-7
  31. Mukai, T., Toba, T., Itoh, T. and Adachi, S. (1990) Structural investigation of the capsular polysaccharide from Lactobacillus kefiranofaciens K1. Carbohydr. Res., 204, 227-232 https://doi.org/10.1016/0008-6215(90)84039-W
  32. Nakajima, H., Toyoda, S., Toba, T., Itoh, T., Mukai, T., Kitazawa, H. and Adachi, S. (1990) A novel phosphopolysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT0495. J. Dairy Sci., 73, 1472-1477 https://doi.org/10.3168/jds.S0022-0302(90)78812-1
  33. Rhee, C.H. and Park, H.D. (2001) Three glycoproteins with antimutagenic activity identified in Lactobacillus plantarum KLAB21. Appl. Environm. Microbiol., 67, 3445-3449 https://doi.org/10.1128/AEM.67.8.3445-3449.2001
  34. Lee, J.Y., Park, H.D. and Choi, S.W. (2001) Physicochemical characteristics of various peach cultivars. J. Food Sci. Nutr. 6, 107-111
  35. Maron, D.M. and Ames, B.N. (1983) Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-219 https://doi.org/10.1016/0165-1161(83)90010-9
  36. Yagahi, T., Nagao, M., Sugimura, T., Fuya, A. and Matusushima, T. (1979) Mutagenicity of purrlizidine alkaloids in the Salmonella/mammalian-microsome test. Mutat. Res., 68, 211-216 https://doi.org/10.1016/0165-1218(79)90152-6
  37. Deman, J.C., Rogasa, M. and Sharp, M.E. (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol., 23, 130-134 https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  38. Koo, Y.J., Lee, D.S., Shin, D.H. and Yu, T.J. : Studies on thermal resistance of selected yeast strain for pasteurization of solid packed peach. Kor. J. Food Sci. Technol., 13, 43-85, 1981
  39. AOAC (1990) Official methods of analysis, 15th ed., Association of Official Analytical Chemists, Washington D.C., U.S.A
  40. Amerine, M.A. and Ough, C.S. (1980) Methods for analysis of musts and wine. John Wiley & Sons, New York, U.S.A
  41. Dubois, M., Gills, K.A., Hamilton, J.N., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-352 https://doi.org/10.1021/ac60111a017
  42. Ohashi, T., Ishimizu, T., Akita, K. and Hase, S. (2007) In vitro stabilization and minimum active component of polygalacturonic acid synthase involved in pectin biosynthesis. Biosci. Biotechnol. Biochem., 71, 2291-2299 https://doi.org/10.1271/bbb.70311
  43. Jin, C.H., Suo, B., Kan, J., Wang, H.M. and Wang, Z.J. (2006) Changes in cell wall polysaccharide of harvested peach fruit during storage. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 32, 657-664
  44. McConaughy, S.D., Stroud, P.A., Boudreaux, B., Hester, R.D. and McCormick, C.L. (2008) Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation. Biomacromolecules, 9, 472-480 https://doi.org/10.1021/bm7009653
  45. Abbott, D.W., Hrynuik, S. and Boraston, A.B. (2007) Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterolitica. J. Mol. Biol., 367, 1023-1033 https://doi.org/10.1016/j.jmb.2007.01.030
  46. Mata, J.A., Bejar, V., Llamas, I., Arias, S., Bressollier, P., Tallon, R., Urdaci, M.C. and Quesada, E. (2006) Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res. Microbiol. 157, 827-835 https://doi.org/10.1016/j.resmic.2006.06.004
  47. Kolb, S., Otte, H., Nagel, B. and Schink, B. (1992) Energy conservation in malolactic fermentation by Lactobacillus plantarum and Lactobacillus sake. Arch. Microbiol., 157, 457-463 https://doi.org/10.1007/BF00249105
  48. Pozo-Bayon, M.A., G-Alegria, E., Polo, M.C., Tenorio, C., Martin-Alvarez, P.J., Calvo de la Banda, M.T., Ruiz-Larrea, F. and Moreno-Arribas, M.V. (2005) Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J. Agric. Food Chem., 53, 8729-8735 https://doi.org/10.1021/jf050739y