Isolation and Characterization of Tartaric Acid-Degrading Bacteria from Korean Grape Wine Pomace

국산 포도주 주박으로부터 주석산 분해 세균의 분리 및 특성

  • Kim, Jong-Hyun (Department of Food Science and Technology, Kyungpook National University) ;
  • Choi, Sang-Hoon (Department of Food Science and Technology, Kyungpook National University) ;
  • Hong, Young-A (Department of Food Science and Technology, Kyungpook National University) ;
  • Kim, Dong-Hwan (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Won-Hee (Department of Wood Science and Technology, Kyungpook National University) ;
  • Rhee, Chang-Ho (Gyeongbuk Institute of Bio Industry) ;
  • Park, Heui-Dong (Department of Food Science and Technology, Kyungpook National University)
  • Published : 2008.06.30

Abstract

Several tartaric acid-degrading bacteria were isolated from Korean grape wine pomace after enrichment culture at $30^{\circ}C$ for 10 days in liquid media containing tartaric acid Among them, strains KMBL 5777 and KMBL 5778 exhibited the highest level in the growth and tartaric acid degradability in a medium containing 0.2%(w/v) tartaric acid as a sole carbon source. They were identified as Acetobacter tropicalis based on their morphological and physiological characteristics as well as their 16S rDNA sequences. Blast search of the 16S rDNA sequences revealed that the isolated strains are closest to Acetobacter tropicalis. Homologies of the sequences of KMBL 5777 and KMBL 5778 were 96.0 and 98.9%, respectively with those of A. tropicalis LMG 1663. Both the two bacteria showed higher tartaric acid degradation at $25^{\circ}C$ that those at 20 and $30^{\circ}C$. They could degrade tartaric acid at a wide range of pH between 4.0 and 7.0 with the most rapid degradability at pH 7.0. However, when the bacteria were grown for 8 days, the same level of tartaric acid degradation was observed at pH 4.0, 5.0, 6.0 and 7.0, which was 90.0% of degradation of the acid.

주석산은 포도에 상당량 함유되어 있어 포도 주스 또는 포도주의 저장 및 유통 기간 중에 침전물을 형성하여 품질을 저하시킨다. 본 연구에서는 주석산의 분해에 사용될 수 있는 효소 자원의 개발을 목적으로 주석산 분해 세균을 분리하고 그 특성을 조사하였다. 주석산의 함량이 높은 것으로 알려진 국산 캠벨얼리 포도주의 주박으로부터 주석산 분해세균을 집식배양한 후 주석산을 탄소원으로 함유하는 배지를 사용하여 주석산을 분해할 수 있는 세균을 분리하였다. 분리 균주 중에서 KMBL 5777과 KMBL 5778 두 균주가 주석산 함유 배지에서 생육도와 주석산 분해능이 가장 우수하였다. 이 두 균주의 형태학적, 생리학적 특성 및 165 rDNA를 분석하여 Acetobacter tropicalis로 동정하였다. 16S rDNA 염기서열의 상동성은 KMBL 5777 균주와 A. tropicalis LMG 1663 균주 사이에는 99.3%, KMBL 5778 균주와 A. tropicalis A77 균주 사이에는 99.8%로 나타났다. 두 균주에 의한 주석산 분해 조건을 조사한 결과 두 균주 모두 $25^{\circ}C$, 배지의 초기 pH 6.0에서 가장 우수한 생육도와 주석산 분해능을 나타내었다. 주석산 0.2%를 함유하는 배지에서 8일간의 배양 후에는 600 nm에서의 생육도가 약 2.3에 도달하였으며 주석산 분해율은 약 90%를 나타내었다. 온도에 의한 영향은 $25^{\circ}C$에 비하여 20, $30^{\circ}C$의 순으로 활성이 감소하였으며 37'E에서는 생육과 주석산 분해가 전혀 불가능하였다. pH 6에 비하여 pH 7, 5, 4, 3의 순으로 주석산의 분해속도가 감소하였으나 pH7, 5, 4의 경우에는 배양 8일 후 pH 6의 경우와 유사한 주석산 분해능을 나타내었다.

Keywords

References

  1. Ministry of Agriculture & Forestry (2006) Agricultural & forestry statistical yearbook, Ministry of Agriculture & Forestry, Seoul, Korea. p. 117
  2. Kim, S.K. (2005) The present state of grape cultivation in Korea. In: Syposium on development of Yeongdong grape cluster regional innovation. Yeongdong Grape Cluster Organization, Yeongdong, Korea. p. 4-10
  3. Yook, C., Seo, M.H., Kim, D.H and Kim, J.S. (2007). Quality improvement of Campbell Early wine by mixing with different fruits. Korean J. Food Sci. Technol., 39, 390-399
  4. Park, W.M., Park, H.G., Rhee, S.J., Lee, C.H., and Yoon K.E. (2002) Suitability of domestic grape, cultivar Campbell's Early, for production of red wine. Korean J. Food Sci. Technol., 34, 590-596
  5. Park, W.M., Park, H.G., Rhee, S.J., Kang, K.I., Lee, C.H. and Yoon, K.E. (2004) Properties of wine from domestic grape, Vitis labrusca cultivar. Campbell's Early, fermented by carbonic maceration vinification process Korean J. Food Sci. Technol., 36, 773-778
  6. Seo, S.H., Rhee, C.H. and Park, H.D. (2007) Degradation of malic acid by Issatchenkia orientalis KMBL 5774, an acidophilic yeast strain isolated from Korean grape wine pomace. J. Microbiol., 45, 521-527
  7. Beelman, R.B. and Gallander, J.F. (1979) Wine deacidification. Adv. Food. Res. 25, 1-53 https://doi.org/10.1016/S0065-2628(08)60234-7
  8. Ruffner, H.P. (1982) Metabolism of tartaric and malic acids in Vitis: a review, Part A. Vitis, 21, 247-259
  9. Thornton, R.J. and S.B. Rodriguez (1996) Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions. Food Microbiol., 13, 475-482 https://doi.org/10.1006/fmic.1996.0054
  10. Volschenk, H., Viljoen-Bloom, M., Subden, R.E. and van Vuuren, H.J.J. (2001) Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast, 18, 963-970 https://doi.org/10.1002/yea.743
  11. Gallander, J.F. (1977) Deacidification of eastern table wines with Schizosaccharomyces pombe. Am. J. Enol. Vitic., 28, 65-68
  12. Pretorius, I.S. (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 16, 675-729 https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B
  13. Munyon, J.R. and Nagel, C.W. (1977) Comparison of methods of deacidification of musts and wines. Am. J. Enol. Vitic. 28, 79-87
  14. Ramon-Portugal, F., Seiller, I., Taillandier, P., Favarel, J.L., Nepveu, F. and Strehaiano, P. (1999) Kinetics of production and consumption of organic acids during alcoholic fermentation by Saccharomyces cerevisiae. Food Technol. Biotechnol., 37, 235-240
  15. Fonseca, A, Fell, J.W., Kurtzman, C.P. and Spencer- Martins, I. (2000) Candida tartarivorans sp. nov., an anamorphic ascomycetous yeast with the capacity to degrade L- and meso-tartaric acid. Int. J. Syst. Evol. Microbiol., 50, 389-394 https://doi.org/10.1099/00207713-50-1-389
  16. Kurtzman, C.P. and Robnett, C.J. (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie an Leeuwenhoek, 73, 331-371 https://doi.org/10.1023/A:1001761008817
  17. Graham, H.F. (1993) Wine: microbiology and biotechnology, Harwood Academic Publishers, Chur, Switzland
  18. DeBolt, S., Cook, D.R. and Ford, C.M. (2006) L-Tartaric acid synthesis from vitamin C in higher plants. Proc. Natl. Acad Sci., USA 103, 5608-5613
  19. Gao, C. and G.H. Fleet. 1995. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol., 12, 65-71 https://doi.org/10.1016/S0740-0020(95)80080-8
  20. Fonseca, A. (1992) Utilization of tartaric acid and related compounds by yeasts: taxonomic implications. Canadian J. Microbiol., 38, 1242-1251 https://doi.org/10.1139/m92-205
  21. Boulton, R.B., Singleton, V.L., Bisson, L.F. and Kunkee, R.E. (1996) Principles and practices of winemaking. Chapman & Hall, New York, U.S.A. p.320-351
  22. Goncalves, F., Fernandes, C., dos Santos, P.C. and de Pinho, M.N. (2003) Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. J. Food Engin., 59, 229-235 https://doi.org/10.1016/S0260-8774(02)00462-4
  23. Lee, S.O. and Park, M.Y. (1980) Immobilization of Leuconostoc oenos cells for wine deacidification. Korean J. Food Sci. Technol., 12, 299-304
  24. Lee, S.R., Kang, H.A., Chang, Y.I. and Chang, K.S. (1999) The changes of physicochemical composition of wine by reverse osmosis system. Food Eng. Prog., 3, 1-7
  25. Ko, E.J. and Choi, Y.H. (1999) Clarification of grape juice by ultrafiltration and membrane fouling characteristics. Food Eng. Prog., 3, 57-63
  26. Sievers, M. and Swings, J. (2005) Genus I. Acetobacter Beijerinck 1898, 215AL, In: Bergey's manual of systematic bacteriology (2nd Ed.) Vol. II, Brenner, D.J., Krieg, N.R. and Staley, J.T.(Editor), Springer, New York, U.S.A., p.51-54
  27. Park, M.H., Lyu, D.K. and Ryu, C.H. (2002) Characteristics of high acidity producing acetic acid bacteria isolated from industrial vinegar fermentation. J. Korean Soc. Food. Sci. Nutr., 31, 394-398 https://doi.org/10.3746/jkfn.2002.31.3.394
  28. Sheehan, D. and Hrapchak, B. (1980) Theory and practice of histotechnology. Battelle Press, Columbus, USA., p.330-331
  29. Knutton, S. (1995) Electron microscopical methods in adhesion. Methods Enzymol. 253, 145-158 https://doi.org/10.1016/S0076-6879(95)53015-0
  30. Hayashi, H., Sakamoto, M. and Benno, Y. (2004) Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal Bifidobacterium spp. in health subjects. Microbiol. Immunol., 48, 1-6 https://doi.org/10.1111/j.1348-0421.2004.tb03481.x
  31. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1992) Short protocol in molecular biology, 2nd ed. John Wiley & Sons, Inc., New York., U.S.A
  32. Mantha, D., Aslam-Basha, Z. and Panda, T. (1998) Optimization of medium composition by response surface methodology for the production of tartaric acid by Gluconobacter suboxydans. Biopress Engin., 19, 285-288
  33. Cappuccion, J.G. and Sherman, N. (1983) Microbiology: a laboratory manual. Abbison-Wesley Publishing Co. Inc., U.S.A
  34. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. and Komagata, K. (2000) Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J. Gen. Appl. Microbiol., 46, 147-65 https://doi.org/10.2323/jgam.46.147
  35. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. and Komagata, K. (2001) Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov. and Acetobacter orientalis sp. nov. J. Gen. Appl. Microbiol., 47, 119-131 https://doi.org/10.2323/jgam.47.119
  36. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. and Swings, J. (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int. J. Syst. Evol. Microbiol., 52, 1551-1558 https://doi.org/10.1099/ijs.0.02064-0
  37. Ohmori, S., Masai, H., Arima, K. and Beppu, T. (1980) Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. Agric. Biol. Chem., 44, 2901-2906 https://doi.org/10.1271/bbb1961.44.2901
  38. Saeki, A., Theeragool, G., Matsushita, K., Toyama, H., Lotong, N. and Adachi, O. (1997) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci. Biotechnol. Biochem., 61, 138-145 https://doi.org/10.1271/bbb.61.138
  39. Lu, S.F., Lee, F.L. and Chen, H.K. (1999) A thermotolerant and high acetic acid-producing bacterium Acetobacter sp. I14-2. J. Appl. Microbiol., 86, 55-62 https://doi.org/10.1046/j.1365-2672.1999.00633.x
  40. Lafon-Lafourcade, S., Carre, E. and Ribéreau-Gayon, P. (1983) Occurrence of lactic acid bacteria during the different stages of vinification and conservation of wines. Appl. Environ. Microbiol., 46, 874-880