Grazing Effects of Freshwater Bivalve Unio douglasiae on the Hibernal Diatom Bloom in the Eutrophic Lake and Stream

저온기 부영양 수계의 규조 발생에 대한 말조개의 섭식특성

  • Lee, Song-Hee (Department of Environmental Science, Konkuk University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University) ;
  • Kim, Baik-Ho (Department of Environmental Science, Konkuk University)
  • 이송회 (건국대학교 생명환경과학대학 환경과학과) ;
  • 황순진 (건국대학교 생명환경과학대학 환경과학과) ;
  • 김백호 (건국대학교 생명환경과학대학 환경과학과)
  • Published : 2008.06.30

Abstract

Filtration rates and fecal production of freshwater bivalve, Unio douglasiae on two kinds of hibernal diatom communities were measured simultaneously in a laboratory. One community is the Han River (HAN), which dominated by Asterionella Formosa. Stephanodiscus hantzschii (ca. 98% of total phytoplankton). The other community is the Ilgam Lake (IL), which dominated by Synedra ulna, Scenedesmus sp. Microcystis aeruginosa (ca. 82%). The HAN water has higher concentrations of nutrient (TN and TP) and chlorophyll $\alpha$ (Chl-$\alpha$), lower turbidity and conductivity than the IL water. Water sampling for the feeding experiment was conducted in the same day (Jan 15, 2008) and similar time (AM 10:00 for HAN, AM 11:00 for IL). Mussels with the similar size ($0.0{\pm}0.5\;cm$) were collected from the Gunsan and Okgu district (Jeonbuk), and starved in a laboratory for 2 days before the experiment. The experiment comprised CON (no addition of mussel), LOW (addition of mussel at 0.3 indiv. $L^{-1}$), MID (1.0 indiv. $L^{-1}$) and HIGH (2.0 indiv. $L^{-1}$), respectively. With the increment of mussel density and time, the concentration of Chl-$\alpha$ in two diatom communities were clearly decreased; Chl-$\alpha$ of HAN gradually decreased after 1 hour of mussel treatment, while that of IL decreased as soon as mussel introduction. In 7 hours of treatment, the former was removed finally up to about 90% of control, while the later was remained as about 50%. Under the presence of mussel, total phytoplankton density was shifted as the similar patterns to that of Chl-$\alpha$ (r=0.705, P<0.0001), however, there showed the drastic differences following a species. Based on the concentration of Chl-$\alpha$, filtration rate of U. douglasiae averaged 0.266 $L\;g^{-1}\;h^{-1}$ (0.115 to 0.442) on HAN and $0.577\;L\;g^{-1}\;h^{-1}$ (0.146 to 1.428) on IL water, respectively. There were no differences in feces production among the mussel density in the HAH water (ANOVA, P>0.5), while in IL water, including lots of seston, the HIGH mussel produced the higher fecal materials, over one hundred times of LOW. These results suggest that freshwater bivalve Unio douglasiae have the alternative potential, as a filter-feeder of seston in turbid lake, and a biological controller of diatom bloom in cold stream.

서로 다른 물리-화학적 성격이 다른 저온기 두 부영양수계에서 우점하는 규조류 중심의 현장수에 대한 한국산 말조개(Unio douglasiae)의 섭식특성-여과능 및 배설물 생산을 각각 비교 조사하였다. 두 실험수 모두 패류밀도가 증가할수록 뚜렷한 엽록소 $\alpha$ 감소를 보였으며, 한강시료는 1시간 이후부터, 일감호 시료는 패류 처리와 함께 즉시 감소였다. 한강시료는 고밀도 처리에서 감소율이 높았으며 (약 90%), 일감호시료는 패류밀도 간에 다소 차이는 보였으나 고밀도군에서도 50% 정도 감소하였다. 조류 현존량의 변화경향는 엽록소와 유사하였으며, 시료와 조류종에 따라 차이를 보였다. 패류의 조류여과능은 패류적용 1시간째 시료 간에는 큰 차이를 보였으나 시간이 경과할수록 유사한 수준에 도달하였다. 배설물 생산은 한강시료에서는 밀도간에 차이가 적었으며 일감호의 높은 전도도와 탁도, 낮은 DO 포화도에서는 밀도 간에 100배 이상의 큰 차이를 나타냈다. 특히 일감호에서 고밀도 패류 적용시, 낮은 엽록소(조류)감소 및 높은 배설물 생산 등은 소화가 어려운 고형물의 축적효과가 높아 저온기 동안 탁도가 높은 하천 및 호수의 수질개선에 매우 효과적일 것으로 사료되었다.

Keywords

References

  1. 권오길, 최준길. 1982. 의암호의 패류에 관한 연구 (2) 의암호의 패류상과 어류의 패류내 산란에 관한 연구. 한국육수학회 지 15: 39-50
  2. 길봉섭. 1976. 담수산 이매패의 생태학적 연구- 분포와 형태변 이. 한국육수학회지 9: 29-38
  3. 김건희, 김백호, 박명환, 황순진. 2008. 담수패류(Unio douglasiae) 와 침수식물 (Potamogeton crispus)의 유해 남조 Oscillatoria sp. 성장억제 효과. 한국육수학회지 41(S): 68-76
  4. 김호섭, 공동수, 황순진. 2005. 얕은 부영양 저수지의 동, 식물 플랑크톤 군집 변화 특성. 한국육수학회지 38: 18-29
  5. 김호섭, 박정환, 공동수, 황순진. 2004. 참재첩을 이용한 부영양 호의 수질개선. 한국육수학회지 37: 332-343
  6. 박구성, 김백호, 엄한용, 황순진. 2008. 남조류 대발생 환경에서 수심과 용존산소 변화에 따른 담수산 이매패(말조개)의 생존율, 여과율 및 배설물 생산. 한국하천호수학회지 41(S): 50-60
  7. 백현민, 송호복, 권오길. 2002. 홍천강 상류에 서식하는 묵납자 루, Acheilognathus signifer의 연령과 성장. 한국어류학회 지 14: 254-261
  8. 서미연, 김백호, 배경석, 한명수. 2005. 한강하류의 남조류 및 환경요인의 연간(2000-2003) 변화에 대하여. 한국육수학 회지 38: 315-321
  9. 이연주, 김백호, 김난영, 엄한용, 황순진. 2008. 수온, 먹이농도, 패각 크기가 Microcystis aeruginosa에 대한 말조개의 여 과율 및 배설물 생산에 미치는 영향. 한국하천호수학회지 41(S): 61-67
  10. 정승원, 이진환, 유종수. 2003. 한강 하류의 환경학적 연구 V. 식물 플랑크톤 군집 대발생의 특징. Algae 18: 255-262 https://doi.org/10.4490/ALGAE.2003.18.4.255
  11. 환경부. 2004. 수질오염공정시험방법
  12. APHA. 1995. Standards methods for the examination of water and wastewater (19thED.). American Public Health Association, Washington, D.C.
  13. Bontes, B.M., A.M. Verschoor, L.M.D. Pires, E. Van Donk and Bas W. Ibelings. 2007. Functional response of Anodonta anatina feeding on a green alga and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 584: 191-204 https://doi.org/10.1007/s10750-007-0580-2
  14. Caraco, N.F., J.J. Cole, P.A. Raymond, D.L. Strayer, M.L. Pace, S.E.G. Findlay and D.T. Fischer. 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588-602 https://doi.org/10.1890/0012-9658(1997)078[0588:ZMIIAL]2.0.CO;2
  15. Cohen, R.R.H., P.V. Dresler, E.J.P. Phillips and R.L. Cory. 1984. The effect of the Asiatic calm, Corbicula fluminea, on phytoplankton of the Potomac River, Marrland. Limnol. and Oceanor. 29: 170-180 https://doi.org/10.4319/lo.1984.29.1.0170
  16. Dionisio Pires, L.M., B.M. Bontes, E. Van Donk and B.W. Ibelings. 2005. Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. J. Plankton Res. 27: 331-339 https://doi.org/10.1093/plankt/fbi008
  17. Dame, R.F., R. Zingmark and D. Nelson. 1985. Filter feeding coupling between the estuarine water column and benthic subsystems, p. 521-526. In: Estuarine Perspectives (Kennedy, V.S. ed.). Academic Press, New York
  18. Dame, R.F. 1996. Ecology of marine buvalves: An ecosystem approach. CRC Press, Boca Raton, 254 p.
  19. Englund, V.P.M. and M.P. Heino. 1996. Valve movement of the freshwater mussel Anodonta anatina: a reciprocal transplant experiment between lake and river. Hydrobiologia 328: 49-56 https://doi.org/10.1007/BF00016899
  20. Fanslow, D.L., T.F. Nalepa and G.A. Lang. 1995. Filtration rates of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 489-500 https://doi.org/10.1016/S0380-1330(95)71061-9
  21. Ha, K., M.H. Jang and G.J. Joo. 2002. Spatial and temporal dynamics of phytoplankton communities along a regulated river system, the Nakdong river, Korea. Hydrobiologia 470: 235-245 https://doi.org/10.1023/A:1015610900467
  22. Heath, R.T., G.L. Fahnenstiel, W.S. Gardner, J.F. Cavaletto and S.J. Hwang. 1995. Ecosystem-level effects of zebra mussel (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 501-516 https://doi.org/10.1016/S0380-1330(95)71062-0
  23. Holland, R.E. 1993. Changes in plankton diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. J. Great Lakes Res. 19: 617-624 https://doi.org/10.1016/S0380-1330(93)71245-9
  24. Hong, S.S., S.W. Bang and M.S. Han. 2002. Effects of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Pal'tang Reservoir, Korea. J. Freshwater Ecol. 17: 507-519 https://doi.org/10.1080/02705060.2002.9663929
  25. Hwang, S.J. 1996. Effects of zebra mussel (Dreissena polymorpha) on phytoplankton and bacterioplankton: Evidence for size-selective grazing. Kor. J. Limnol. 29: 363 -378
  26. Hwang, S.J., H.S. Kim and J.K. Shin. 2001. Filter feeding effects of a freshwater bivalve (Corbicula leana PRIME) on phytoplankton. Kor. J. Limnol. 34: 298-309
  27. Hwang, S.J., H.S. Kim, J.K. Shin, J.M. Oh and D.S. Kong. 2004. Grazing effects of a freshwater bivalve (Corbicula leana PRIME) and large zooplankton on phytoplankton communities in two Korea Lakes. Hydrobiologia 515: 161-179 https://doi.org/10.1023/B:HYDR.0000027327.06471.1e
  28. Jack, J.D. and J.H. Thorp. 2000. Effects of the benthos suspension feeder Dressena polymorpha on zooplankton on a large river. Freshwater Biol. 44: 569-579 https://doi.org/10.1046/j.1365-2427.2000.00609.x
  29. Kilham, P., S. Kilham and R.E. Hecky. 1986. Hypothesized resource relationships among African planktonic diatoms. Limnol. Oceanogr. 31: 1169-1181 https://doi.org/10.4319/lo.1986.31.6.1169
  30. Lee, C.W., C.W. Jung, S.W. Han, L.S. Kang and J.H. Lee. 2001. The removal of algae by oxidation and coagulation processes. J. Korean Soc. Environ. Eng. 23: 1527- 1536
  31. Leitao, M. 1995. Eutrophication du Loir et son incidence surl'usine d'eau potable de la Fleche (Sar the). Technol. Sci. Methods 1: 31-37
  32. Lim, Y.S., W.S. Song, J.S. Cho, H.J. Lee and J.S. Heo. 2000. The effect of algae on coagulation and filtration of water treatment process. Korean J. Environ. Agricul. 19: 13-19
  33. Loo, L-O. and R. Pillsbuty. 1989. Bivalve suspension-feeding dynamics and benthic-pelagic coupling in a eutrophicated marine bay. J. Exp. Mar. Biol. Ecol. 130: 253-276 https://doi.org/10.1016/0022-0981(89)90167-6
  34. Mellina, E., J.B. Rasmussen and E.L. Mills. 1995. Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Can. J. Fish. Aquat. Sci. 52: 2553-2573 https://doi.org/10.1139/f95-246
  35. Nicholls, K.H. and G.J. Hopkins. 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. J. Great Lakes Res. 19: 637-647 https://doi.org/10.1016/S0380-1330(93)71251-4
  36. Noordhius, R., H. Reeders and A. Bij De Vaate. 1992. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11: 307-311 https://doi.org/10.4319/lo.1966.11.2.0307
  37. Oksiyuk, O.P. 1965. Stephanodiscus hantzschii Grun. as an aromatic organisms capable of giving fish smell to water. Gidrobiology Zhurnal 1: 50-53
  38. Phelps, H.L. 1994. The Asiatic Clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River Estuary near Washington, DC. Estuaries 17: 614-621 https://doi.org/10.2307/1352409
  39. Reeders, H.H. and A.B. Bij de Vaate. 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201: 437-450 https://doi.org/10.1007/BF02530361
  40. Sakevich, A.I. 1970. The discovering of methylamines in the culture of Stephanodiscus hantzschii Grun. Gidrobiology Zhurnal 6: 98-100
  41. Shumway, S.E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquacul. Soc. 21: 65-104 https://doi.org/10.1111/j.1749-7345.1990.tb00529.x
  42. Shumway, S.E. and T.L. Cucci. 1987. The effects of the toxic dinoflagellate Protogonyaulax tamarensis on the feeding and behaviour of bivalve molluscs. Aquatic Toxicol. 10: 9-27 https://doi.org/10.1016/0166-445X(87)90024-5
  43. Sprung, M. and U. Rose. 1988. Influence of food size and quality of the feeding of the mussel Dreissena polymorpha. Oecologia 77: 526-532 https://doi.org/10.1007/BF00377269
  44. Vaughn, C.C. and C.C. Hakenkamp. 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biol. 46: 1431-1446 https://doi.org/10.1046/j.1365-2427.2001.00771.x
  45. Ward, J.E., J.S. Levinton, S.E. Shumway and T. Cucci. 1998. Particle sorting in bivalves: in vivo determination of the pallial organs of selection. Marine Biol. 131: 283-292 https://doi.org/10.1007/s002270050321
  46. Winkel, E.H. and C. Davids. 1982. Food selection by Dreissena polymorpha Pallas (Mollusca: Bivalvia). Freshwater Biol. 12: 533-558
  47. Yokoyama, A. and H.D. Park. 2002. Depuration kinetics and persistence of the Cyanobacterial toxin Microcystin- LR in the freshwater bivalve Unio douglasiae. Environ. Toxicol. 18: 61-67 https://doi.org/10.1002/tox.10102