A Comparison on the Positioning Accuracy from Different Filtering Strategies in IMU/Ranging System

IMU/Range 시스템의 필터링기법별 위치정확도 비교 연구

  • Published : 2008.06.30

Abstract

The precision of sensors' position is particularly important in the application of road extraction or digital map generation. In general, the various ranging solution systems such as GPS, Total Station, and Laser Ranger have been employed for the position of the sensor. Basically, the ranging solution system has problems that the signal may be blocked or degraded by various environmental circumstances and has low temporal resolution. To overcome those limitations a IMU/range integrated system could be introduced. In this paper, after pointing out the limitation of extended Kalman filter which has been used for workhorse in navigation and geodetic community, the two sampling based nonlinear filters which are sigma point Kalman filter using nonlinear transformation and carefully chosen sigma points and particle filter using the non-gaussian assumption are implemented and compared with extended Kalman filter in a simulation test. For the ranging solution system, the GPS and Total station was selected and the three levels of IMUs(IMU400C, HG1700, LN100) are chosen for the simulation. For all ranging solution system and IMUs the sampling based nonlinear filter yield improved position result and it is more noticeable that the superiority of nonlinear filter in low temporal resolution such as 5 sec. Therefore, it is recommended to apply non-linear filter to determine the sensor's position with low degree position sensors.

위치 센서를 기반으로 하는 디지털 지도의 구축과 이로부터의 도로의 추출과 같은 생성물의 정확도는 센서의 위치 정확도에 좌우되며, 센서의 위치결정을 위하여 GPS, 토탈스테이션, 레이저거리계 등 다양한 거리측정시스템들이 사용되어 왔다. 일반적으로 거리측정시스템들은 주위 다양한 환경에 따라 신호단절 및 감퇴의 문제점과 낮은 시간해상도를 가지고 있다. 이러한 한계를 극복하기 위해 관성 장치와 같은 자동 항법 장치를 이용하여 상호 보완 및 통합하여 IMU/Range 통합 시스템을 구성 할 수 있다. 본 논문에서는 항법 및 측지분야에서 성공적으로 사용되어 왔던 선형필터인 확장 칼만 필터(Extended Kalman Filter, EKF)의 문제점을 지적하고, 비선형 변환과 선택된 시그마 포인트를 이용한 시그마 포인트 칼만 필터(sigma point Kalman filter, SPKF)와 비가우시안 가정과 샘플링 방식의 파티클 필터(Particle filter, PF) 등 두가지 비선형 필터를 구현하고, 시뮬레이션을 수행하여 그 결과를 확장 칼만 필터의 경우와 비교하였다. 시뮬레이션의 거리측정시스템으로 GPS와 토탈스테이션이 사용되었고 IMU의 경우, 정밀도 레벨에 따른 일반적인 3가지 센서(IMU400C, HG1700, LN100)가 선택되었다. 모든 IMU와 거리측정시스템에 대해서 샘플링 기반의 비선형 필터인 SPKF와 PF가 EKF에 비해 통계 결과에서 향상된 위치 결과를 보여 주었으며 특히 거리측정시스템의 갱신간격이 길어질수록(1초$\rightarrow$5초) 비선형 필터의 우수성이 나타났다. 따라서 저가형 위치센서의 경우, 비선형 필터를 적용하여 센서 위치의 정확도를 높일 수 있는 것으로 판단된다.

Keywords

References

  1. Aggarwal, P., Gu, D., El-Sheimy, N. (2006), Adaptive Particle Filter for INS/GPS Integration. ION GNSS 19th International Technical Meeting of the Satellite Division, 26-29 September 2006, pp. 1606-1613
  2. Ding, M., Zhou, Q., Wang, Q. (2006), The Application of Self-adaptive Kalman filter in NGIMU/GPS Integrated Navigation System. Volume 2 of the Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Oct. 2006, pp. 61-65
  3. Gelb, A. (ed.) (1974), Applied Optimal Estimation. MITPress, Cambridge, MA
  4. Godsill, S. J., Doucet, A., West, M. (2000), Monte Carlo smoothing for nonlinear timeseries.In Symposium on Frontiers of Time Series Modeling, Tokyo, Japan, Institute of Statistical Mathematics
  5. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.-J. (2002), Particle filters for positioning, navigation, and tracking., IEEE Transactionson Signal Processing, Vol. 50, pp. 425-437 https://doi.org/10.1109/78.978396
  6. Farrell J. and Barth M., (1998), The Global Positioning System and Inertial Navigation. McGraw-Hill, NewYork
  7. Hide, C., Moore, T., Smith, M. (2004), Adaptive Kalman filtering algorithms for integrating GPS and low cost INS. Position Location and Navigation Symposium 2004 (PLANS 2004), 26-29 April 2004, pp. 227 - 233
  8. Jekeli, C. (2000), Inertial Navigation Systems with Geodetic Applications. Walter deGruyter, Inc., Berlin
  9. Julier, S.J., Uhlmann, J.K., and Durrant-Whyte, H.F. (2000), A new approach for nonlinear transformations of means and covariances in filters and estimators. IEEE Transactionson Automatic Control, Vol. 45, pp. 477-482 https://doi.org/10.1109/9.847726
  10. Meditch, J.S. (1969), Stochastic Optimal Linear Estimation and Control. McGraw-Hill, NewYork
  11. Nassar, S. (2003), Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications. Ph.D. Thesis, University of Calgary, UCGE Report No.20183
  12. Rogers R.M. (2000), Applied Mathematics in Integrated Navigation Systems. AIAA Education Series American Institute of Aeronautics and Astronautics, Inc., Reston,VA
  13. Salytcheva, A.O. (2004), Medium Accuracy INS/GPS Integration in Various GPS Environments. M.Sc. Thesis, University of Calgary, UCGE Report 20200
  14. Shin, E.H. (2005), Estimation Techniques for Low-Cost Inertial Navigation. Ph.D. Thesis, University of Calgary, UCGE Report 20219
  15. Simms, J., Carin L. (2004), Innovative navigation systems to support digital geophysical mapping ESTCP #200129 phase II demonstrations. Revised Report, September 2004, U.S.Army Corps of Engineers Engineer Research and Development Center, Vicksburg, MS
  16. U.S. Army Corps of Engineers (2006), Innovative navigation systems to support digital geophysical mapping ESTCP #200129, Phase III APG demonstrations and Phase IV development. Final Report, 17 February 2006, U.S. Army Corps of Engineers, Engineering and Support Center, Huntsville, AL