DOI QR코드

DOI QR Code

Ceramic - Polymer Nanocomposite: Alternate Choice of Bone

  • Sarkar, Debasish (Nanometrdogy Center, Korea Research Institute of Standards and Science) ;
  • Chu, Min-Cheol (Nanometrdogy Center, Korea Research Institute of Standards and Science) ;
  • Cho, Seong-Jai (Nanometrdogy Center, Korea Research Institute of Standards and Science)
  • Published : 2008.06.30

Abstract

This study evaluates a range of materials that may be used to design prostheses for bone. It is found that nanocrystalline ceramic-polymer composite could be the best material for prosthetic bone with respect to biocompatibility, morphology, chemistry, and compatibility with the piezoelectric and mechanical behavior of long human bones, such as the femur.

Keywords

References

  1. S. L. Rothman, W. Glenn, M. Rhodes, R. Bruce, and C. Pratt, "Individualized Prosthesis Production from Routine CT Data," Radiology 157 177-82 (1985)
  2. F. Minutoli, M. Gaeta, A. Bottari, and A. Blandino, "MRI Findings in Regional Migratory Osteoporosis of the Knee Migrating from the Femur to the Tibia," Clinical Imaging 30 428-30 (2006) https://doi.org/10.1016/j.clinimag.2006.05.032
  3. S. C. Cowin, W. C. Van Buskirk, and R. B. Ashman, "Properties of Bone. In: Skalak R, Chien S, Editors. Handbook of Bioengineering"; pp. 26-30, New York: McGraw-Hill, 1987
  4. L. Mosekilde, "Vertebral Structure and Strength in Vivo and in Vitro," Calcif. Tiss. Int., 53 S121-6 (1993) https://doi.org/10.1007/BF01673420
  5. M. C. Van der Meulen, K. J. Jepsen, and B. Mikic, "Understanding Bone Strength: Size isn't Everything," Bone 29 101-4 (2001) https://doi.org/10.1016/S8756-3282(01)00491-4
  6. L. Hench, "Bioceramics: From Concept to Clinic," J. Am. Ceram. Soc., 74 1487-510 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  7. W. Bonefield, "Hydroxyapatite Reinforced Polyethylene as an Analogous Material for Bone Replacement," Am. Acad. Sci., 523 173-77 (1988) https://doi.org/10.1111/j.1749-6632.1988.tb38510.x
  8. W. Bonefield, "Composites for Bone Replacement," J. Biomed. Eng., 10 522-26 (1998) https://doi.org/10.1016/0141-5425(88)90110-0
  9. F. G. Evans and R. L. Herbert, "Tensile and Compressive Strength of Human Parietal Bone," J. Appl. Physiol., 104 93-497 (1957)
  10. J. D. Currey, "The Relationship between the Stiffness and the Mineral Content of Bone," J. Biomech. 2 477-80 (1969) https://doi.org/10.1016/0021-9290(69)90023-2
  11. J. D. Currey, "Physical Characteristics Affecting the Tensile Failure Properties of Compact Bone," J. Biomech., 23 837-44 (1990) https://doi.org/10.1016/0021-9290(90)90030-7
  12. B. G. Stuart, Ting M, Richard C, Ravi R, and Smith RL. "Effects of Orthopaedic Wear Particles on Osteoprogenitor Cells," Biomaterials, 27 6096-101 (2006) https://doi.org/10.1016/j.biomaterials.2006.08.023
  13. D. P. Pioletti and A. Kottelat, "The Influence of Wear Particles in the Expression of Osteoclastogenesis Factors by Osteoblasts," Biomaterials, 25 5803-08 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.053
  14. E. Fukada, "Piezoelectricity of Bone and Osteogenesis by Piezoelectric Films. In: Becker RO, Editor. Mechanisms of Growth Control," Springfield: Thomas, 192-210 (1981)
  15. A. A. Marino, J. Rosson, E. Gonzalez, L. Jones, S. Rogers, and E. Fukada, "Quasi-static Charge Interactions in Bone," J. Electrostat., 21 347-60 (1988) https://doi.org/10.1016/0304-3886(88)90036-8
  16. M. Otter, J. Shoenung, and W. S. Williams, "Evidence for Different Sources of Stress-generated Potentials in Wet and Dry Bone," J. Orthop. Res., 3 321-24 (1985) https://doi.org/10.1002/jor.1100030308
  17. H. Macdonald, S. Kontulainen, M. Petit, P. Janssen, and H. McKay, "Bone Strength and its Determinants in Pre-and Early Pubertal Boys and Girls," Bone 39 598-608 (2006) https://doi.org/10.1016/j.bone.2006.02.057
  18. L. Y. Griffin, "Noncontact ACL Injuries: Risk Factors and Prevention Strategies," J. Am. Acad. of Orth. Surg., 8 141-50 (2000) https://doi.org/10.5435/00124635-200005000-00001
  19. H. Gray, "Anatomy of the Human Body," pp. 95-96, In: Warren HL, Editor. Philadelphia: Lea & Febriger, 1918
  20. S. Mohsin, F. J. O'Brien, and T. C. Lee, "Osteonal Crack Barriers in Ovine Compact Bone," J. Anatomy., 208 81-9 (2006) https://doi.org/10.1111/j.1469-7580.2006.00509.x
  21. S. Weiner and W. Traub, "Bone Structure: from Angstroms to Microns," The FASEB, 6 879-85 (1992)
  22. S. Lees, "A Model for the Distribution of HAP Crystallites in Bone - a Hypothesis," Calcif. Tiss. Int., 27 53-6 (1976) https://doi.org/10.1007/BF02441161
  23. L. Cristofolini, M. Viceconti, A. Cappello, and A. Toni, "Mechanical Validation of Whole Bone Composite Femur Models," J. Biomech., 29 525-35 (1996) https://doi.org/10.1016/0021-9290(95)00084-4
  24. W. S. S. Jee, "The Skeletal Tissues," pp. 206-254, In: Weiss L. Editor. Histology: Cell and Tissue Biology. 5th Edition, 1983
  25. J. Wolff, "The Law of Bone Remodeling"; Berlin: Springer Verlag., 1986
  26. K. D. Rogers and P. Zioupos, "The Bone Tissue of the Rostrum of a Mesoplodon Densirostris Whale: a Mammalian Biomineral Demonstrating Extreme Texture," J. Mater. Sci. Lett., 18 651-54 (1999) https://doi.org/10.1023/A:1006615422214
  27. G. Marotti and M. A. Muglia, "A Scanning Electron Microscope Study of Human Bony Lamellae. Proposal for a New Model of Collagen Lamellar Organization," Arch. Ital. Anat. Embriol., 93 163-75 (1988)
  28. L. L. Hench and E. C. Ethridge, "An Interfacial Approach, Biomaterials," pp. 345-346, Academic Press, New York, 1982
  29. H. C. W. Skinner, Mineral and human health. In Environmental Mineralogy. pp. 383-412, EMU Notes in Mineralogy 2. D. J. Vaughan and R. A. Wogelius, editors. Eotvos University Press, Budapest, 2000
  30. F. C. M. Driessens, R. M. H. Verbeeck, Biominerals, pp. 179-209, FL: CRC Press, Boca Raton, 1990
  31. M. C. Dalconi, C. Meneghini, S. Nuzzo, R. Wenk, and S. Mobilio, "Structure of Bioapatite in Human Foetal Bones: An X-ray Diffraction Study," Nuclear Instruments and Methods in Physics Research, B 200 406-10 (2003) https://doi.org/10.1016/S0168-583X(02)01730-5
  32. http://www.pentax.jp/english/lifecare/newceramics/apaceram/index.html
  33. H. Stoss and P. Freisinger, "Collagen Fibrils of Osteoid in Osteogenesis Imperfecta: Morphometrical Analysis of the Fibril Diameter," Am. J. Med. Gen., 45 257 (1993) https://doi.org/10.1002/ajmg.1320450220
  34. T. Miyata, T. Taira, and Y. Noishiki, "Collagen Engineering for Biomaterial Use," Clinical Mater., 9 139-48 (1992) https://doi.org/10.1016/0267-6605(92)90093-9
  35. J. Jonas, J. Burns, E. W. Abel, M. J. Cresswell. J. J. Strain, and C. R. Paterson, "Impaired Mechanical Strength of Bone in Experimental Copper Deficiency," Ann. Nutr. Metab., 37 245-52 (1993) https://doi.org/10.1159/000177774
  36. E. Fukada and I. Yasuda, "On the Piezoelectric Effect of Bone," J. Phys. Soc. Japan, 12 1158-62 (1957) https://doi.org/10.1143/JPSJ.12.1158
  37. A. J. Grodzinsky, H. Lipshitz, and M. J. Glimcher, "Electromechanical Properties of Articular Cartilage during Compression and Stress Relaxation," Nature, 275 448-50 (1978) https://doi.org/10.1038/275448a0
  38. G. B. Reinish and A. S. Nowick, "Piezoelectric Properties of Bone as Functions of Moisture Content," Nature, 253 626-27 (1975) https://doi.org/10.1038/253626a0
  39. D. Hilmi and G. Nejat, "A Mixture Model for Wet Bones-I Theory," Inter. J. Eng. Sci., 15 707-18 (1977) https://doi.org/10.1016/0020-7225(77)90021-0
  40. A. Wang, V. K. Poineni, A. Essner, M. Sokol, D. C. Sun, C. Stark, and J. H. Dumbleton, "The Significance of Nonliniear Motion in the Wear Screening of Orthopaedic Implant Materials," J. Testing Eval., 25 239-45 (1997) https://doi.org/10.1520/JTE11485J
  41. D. Sarkar, S. J. Cho, M. C. Chu, S. S. Hwang, S. W. Park, and B. Basu, "Tribological Properties of $Ti_3SiC_2$," J. Am Ceram Soc, 88 3245-48 (2005) https://doi.org/10.1111/j.1551-2916.2005.00569.x
  42. D. Sarkar, B. Basu, M. C. Chu, and S. J. Cho, "Is Glass Infiltration Beneficial to improve Fretting wear Properties for Alumina?" J. Am. Ceram. Soc., 90 523-32 (2007) https://doi.org/10.1111/j.1551-2916.2006.01380.x
  43. K.E. Healy and P. Ducheyne, "Passive Dissolution of Titanium in Biological Environments (Review)," pp. 179-87 In: Brown, SA Lemons JE, editors. Medical Applications of Titanium and its Alloys: the Material and Biological Issues. Philadelphia: ASTM STP, 1996
  44. R. V. Noort, "Review Titanium: the Implant Material of Today," J. Mater. Sci., 22 3801-81 (1987) https://doi.org/10.1007/BF01133326
  45. L. Z. Zhuang and E. W. Langer, "Determination of Cyclic Strain-hardening Behaviour Produced during Fatigue Crack Growth in Cast Co-Cr-Mo Alloy Used for Surgical Implants," Mater. Sci. Eng. A, 108 247-52 (1989) https://doi.org/10.1016/0921-5093(89)90427-9
  46. X. Wang, Y. Li, J. Wei, and k. Groot, "Development of Biomimetic Nano-hydroxyapatite/poly (Hexamethylene Adipamide) Composites," Biomaterials, 23 [9] 4787-791 (2002) https://doi.org/10.1016/S0142-9612(02)00229-6
  47. S. Hasegawaa, S. Ishii, J. Tamura, T. Furukawa, M. Neo, Y. Matsusueb, Y. Shinkinami, M. Okuno, and T. Nakamura, "A 5-7 Year in Vivo Study of High-strength Hydroxyapatite/poly(L-lactide) Composite Rods for the Internal Fixation of Bone fractures," Biomaterials, 27 1327-32 (2006) https://doi.org/10.1016/j.biomaterials.2005.09.003
  48. H. Itokawa, T. Hiraide, M. Moriya, M. Fujimoto, G. Nagashima, R. Suzuki, and T. Fujimoto, "A 12 Month in Vivo Study of the Response of Bone to a HydroxyapatitePolymethylmethacrylate Cranioplasty Composite," Biomaterials, 28 4922-27 (2007) https://doi.org/10.1016/j.biomaterials.2007.08.001
  49. F. R. A. J. Rose and R. O. C. Oreffo, "Bone Tissue Engineering: Hope vs. Hype," Biochem. Biophys. Res. Commun., 292 1-7 (2002) https://doi.org/10.1006/bbrc.2002.6519
  50. D. T. Reilly, A. H. Burstein, and V. H. Frankel, "The Elastic Modulus of Bone," J. Biomechanics, 7 271-75 (1974) https://doi.org/10.1016/0021-9290(74)90018-9
  51. D. T. Reilly and A. H. Burstein, "The Elastic and Ultimate Properties of Compact Bone Tissue," J Biomech., 8 305-93 (1975)
  52. D. Sarkar, B. Basu, M. C. Chu, and S. J. Cho, "R-Curve Behavior of $Ti_3SiC_2$" Ceram. Inter., 33 789-93 (2007) https://doi.org/10.1016/j.ceramint.2006.01.002
  53. R. K. Nalla, J. J. Kruzic, J. H. Kinney, and R. O. Ritchie, "Mechanistic Aspects of Fracture and R-curve Behavior in Human Cortical Bone," Biomaterials, 26 217-31 (2005) https://doi.org/10.1016/j.biomaterials.2004.02.017
  54. A. Kolleck, G. A. Schneider, and F. A. Meschke, "R-curve Behavior of $BaTiO_3$ and PZT Ceramics under the Influence of an Electric Field Applied Parallel to the Crack Front," Acta Mater., 48 4099-113 (2000) https://doi.org/10.1016/S1359-6454(00)00198-1
  55. K. E. Tanner, R. N. Downes, and W. Bonfield, "Clinical Applications of Hydroxyapatite Reinforced Materials," Br. Ceram Trans., 93 104-07 (1994)
  56. M. Wang, R. Joseph, and W. Bonfield, "Hydroxyapatitepolyethylene Composites for Bone Substitution: Effects of Ceramic Particle Size and Morphology," Biomaterials, 19 2357 -66 (1998) https://doi.org/10.1016/S0142-9612(98)00154-9
  57. L. Fang, Y. Leng, and P. Gao, "Processing and Mechanical Properties of HA/UHMWPE Nanocomposites," Biomaterials, 27 3701-7 (2006) https://doi.org/10.1016/j.biomaterials.2006.02.023
  58. W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, and K Schulte, "Functionally Graded Materials for Biomedical Applications," Mater. Sci. Eng. A, 362 40-60 (2003) https://doi.org/10.1016/S0921-5093(03)00580-X
  59. M. S. A. Bakar, K. Cheang, and A. Khor, "Thermal Processing of Hydroxyapatite Reinforced Polyetheretherketone Composites," J. Mater. Proc. Tech., 89-90 462-66 (1999) https://doi.org/10.1016/S0924-0136(99)00060-6
  60. F. N. Cogswell and D. C. Leach, "Thermoplastic Structural Composites in Service," Plastics, Rubber and Composites Processing and Applications, 18 249-54 (1992)
  61. K. Fujihara, K. Teo, R. Gopal, P.L. Loh, V.K. Ganesh, S. Ramakrishna, K. W. C. Foong, and C. L. Chew, "Fibrous Composite Materials in Dentistry and Orthopaedics: Review and Applications," Comp. Sci. Tech., 64 775-88 (2004) https://doi.org/10.1016/j.compscitech.2003.09.012
  62. A. A. Corvelli, P. J. Biermann, and J. C. Roberts, "Design, Analysis and Fabrication of a Composite Segmental Bone Replacement Implant," J. Adv. Mater., 2 2-8 (1997)
  63. D. J. Kelsey and G. S. Springer, "Composite Implant for Bone Replacement," J. Compos. Mater., 31 1593-631 (1997) https://doi.org/10.1177/002199839703101603
  64. R. K. Roeder, M. M. Sproul, and C. H. Turner, "Hydroxyapatite Whiskers Provide Improved Mechanical Properties in Reinforced Polymer Composites," J. Biomed. Mater. Res., 67A 801-12 (2003) https://doi.org/10.1002/jbm.a.10140
  65. M. Akay and N. Aslan, "Polymeric Composite Hip-joint Prosthesis," Adv. Compos. Lett., 1 74-6 (1992)
  66. M. S. A. Bakar, P. Cheang, and K. A. Khor, "Mechanical Properties of Injection Molded Hydroxyapatite Polyetheretherketone Biocomposites," Comp. Sci. Tech., 63 421-25 (2003) https://doi.org/10.1016/S0266-3538(02)00230-0
  67. G. L. Converse, W. Yue, and R. K. Roeder, "Processing and Tensile Properties of Hydroxyapatite-whisker-reinforced Polyetheretherketone," Biomaterials, 28 927-35 (2007) https://doi.org/10.1016/j.biomaterials.2006.10.031
  68. Y. Zuo, Y. Li, J. Li, X. Zhang, H. Liao, Y. Wang, and W. Yang, "Novel Bio-composite of Hydroxyapatite Reinforced Polyamide and Polyethylene: Composition and Properties," Mater. Sci. Eng. A, 452-453 512-17 (2006)
  69. X. E. Guo, "Mechanical Properties of Cortical and Cancellous Bone Tissue," pp. 10.5-10.14, In: Cowin SC, Editor. Bone Mechanics Handbook. 2nd ed. Boca Raton, FL: CRC Press LLC, 2001
  70. M. Wang, N. H. Ladizesky, K. E. Tanner, I. M. Ward, and W. Bonfield, "Hydrostatically Extruded HAPEXTM," J. Mater. Sci., 5 1023-30 (2000)
  71. D. Mohapatra and D. Sarkar, "Preparation of MgO-$MgAl_2O_4$ Composite for Refractory Application," J. Mater. Proc. Tech., 189 279-83 (2007) https://doi.org/10.1016/j.jmatprotec.2007.01.037
  72. L. Aimin, S. Kangning, D. Weifang, and Z. Dongmei, "Mechanical Properties, Microstructure and Histocompatibility of MWCNTs/HAp Biocomposites," Mater. Lett., 61 1839-44 (2006)
  73. F. Jianqing, Y. Huipin, and Z. Xingdong, "Promotion of Osteogenesis by a Piezoelectric Biological Ceramic," Biomaterials, 18 1531-34 (1997) https://doi.org/10.1016/S0142-9612(97)00087-2