Effect of Heat-epimerized-catechin-mixture Rich in Gallocatechin-3-gallate on Skin Barrier Recovery

갈로카테킨-3-갈레이트가 풍부한 열전환 카테킨의 피부 장벽 회복에 대한 개선 효과

  • Kim, Jeong-Kee (Bioscience Research, Amorepacific Corporation R&D center) ;
  • Shin, Hyun-Jung (Bioscience Research, Amorepacific Corporation R&D center) ;
  • Lee, Sang-Min (Bioscience Research, Amorepacific Corporation R&D center) ;
  • Jeon, Hee-Young (Bioscience Research, Amorepacific Corporation R&D center) ;
  • Lee, Sang-Jun (Bioscience Research, Amorepacific Corporation R&D center) ;
  • Lee, Byeong-Gon (Bioscience Research, Amorepacific Corporation R&D center)
  • 김정기 (아모레퍼시픽 기술연구원) ;
  • 신현정 (아모레퍼시픽 기술연구원) ;
  • 이상민 (아모레퍼시픽 기술연구원) ;
  • 전희영 (아모레퍼시픽 기술연구원) ;
  • 이상준 (아모레퍼시픽 기술연구원) ;
  • 이병곤 (아모레퍼시픽 기술연구원)
  • Published : 2008.06.30

Abstract

Until now, (-)-epigallocatechin-3-gallate(EGCG) is known as the most powerful antioxidant among green tea catechins having many beneficial effects on human skin. Considering that the content of catechins is variable according to many conditions such as solvent, temperature and pressure, we prepared the heat-epimerized-EGCG-mixture (HE-EGCG-mix) containing high content of gallocatechin-3-gallate(GCG) by epimerization during autoclaving process and found out its optimal condition for maximizing conversion from EGCG to GCG. To investigate the effects of EGCG and HE-EGCG-mix on skin barrier function, we performed in vivo experiments with hairless mice. We found that HE-EGCG-mix has more potent stimulating activity than EGCG for the production of involucrin 7(INV7) and for recovery of barrier function in SKH-1 mice. Also, we found that GCG stimulates $PPAR-{\alpha}$ transactivation more effectively than EGCG in vitro by transient transfection assay for $PPAR-{\alpha}$ activation activity. These imply that HE-EGCG-mix consisting of high content of GCG should stimulate more efficiently recovery of skin barrier through PPAR-mediated-kerationocyte differentiation than EGCG. In conclusion, our study may provide a possibility that GCG, the C-2 epimer of EGCG, could be a potentially effective agent for development of new cosmetics or health foods for recovery of skin barrier.

지금까지 (-)-epigallocatechin-3-gallate(EGCG)는 인간의 피부에 유용한 녹차 카테킨 중에서 가장 강력한 항산화 성분으로 알려져 왔다. 본 연구팀은 용매, 온도, 압력 등 다양한 조건을 변화시키며, 멸균과정(autoclaving) 중에 발생하는 이성질체화(epimerization) 과정을 연구하여, gallocatechin-3-gallate(GCG) 함량이 크게 증가된 열전환-EGCG-복합체(heat-epimerzied-EGCG-mixture, HE-EGCG-mix)를 순수한 EGCG로부터 조제 하였다. 이러한 열전환-EGCG-복합체는 무모쥐 SKH-1을 이용한 실험에서, 손상된 피부 장벽의 회복 시에 인보루크린 7(involucrin 7) 단백질의 발현량을 EGCG 처리 시보다 증가시킴을 확인하였다. 또한, in vitro 실험을 통하여 GCG는 $PPAR-{\alpha}$에 대한 전이활성(transactivation) 효과가 EGCG보다 뛰어남을 확인하였다. 이러한 결과는 열전환-EGCG-복합체에 함유된 고함량의 GCG 성분에 의해서, 피부 장벽 손상 회복 시 PPAR에 의해 매개된 각질형성세포(keratinocyte)의 분화가 더욱 촉진될 수 있음을 암시한다. 따라서, EGCG의 C-2 에피머(epimer)인 GCG는 녹차 카테킨을 이용한 피부 장벽 개선 용도의 화장품과 건강식품 개발 시 주요 소재로 활용될 수 있다.

Keywords

References

  1. Z. Y. Chen, Q. Y. Zhu, D. Tsang, and Y. Huang, Degradation of green tea catechins in tea drinks, J. Agric. Food. Chem., 49, 477 (2001) https://doi.org/10.1021/jf000877h
  2. S. Sang, M. J. Lee, Z. Hou, C. T. Ho, and C. S. Yang, Stability of tea polyphenol (-)-epigallocatechin- 3-gallate and formation of dimmers and epimers under common experimental conditions, J. Agric. Food. Chem., 53, 9478 (2005) https://doi.org/10.1021/jf0519055
  3. I. Ikeda, M. Kobayashi, T. Hamada, H. Goto, K. Imaizumi, and A. Nozawa, Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate, J. Agric. Food. Chem., 51, 7303 (2003) https://doi.org/10.1021/jf034728l
  4. K. Yoshino, K. Ogawa, T. Miyase, and M. Sano, Inhibitory effects of the C-2 epimeric isomers of tea catechins on mouse Type IV allergy, J. Agric. Food. Chem., 52, 4660 (2004) https://doi.org/10.1021/jf035476r
  5. M. Dell'Agli, S. Bellosta, L. Rizzi, G. V. Galli, M. Canavesi, and F. Rota, A structure-activity study for the inhibition of metalloproteinase-9 activity and gene expression by analogues of gallocatechin- 3-gallate, Cell. Mol. Life Sci., 62, 2896 (2005) https://doi.org/10.1007/s00018-005-5422-7
  6. S. Hsu, Green tea and the skin, J. Am. Acad. Dermatol., 52, 1049 (2005) https://doi.org/10.1016/j.jaad.2004.12.044
  7. J. H. Lee, J. H. Chung, and K. H. Cho, The effect of epigallocatechin-3-gallate on extracellular matrix metabolism, J. Dermatol. Sci., 40, 195 (2005) https://doi.org/10.1016/j.jdermsci.2005.06.010
  8. S. Hsu, T. Yamamoto, J. Broke, D. S. Walsh, and B. Singh, Green tea polyphenol-induced epithelial cell terminal differentiation is associated with coordinated expression of p57/KIP2 and caspase 14, J. Pharmacol. Exp. Ther., 312, 884 (2005) https://doi.org/10.1124/jpet.104.076075
  9. Z. Y. Wang, M. T. Huang, T. Ferraro, C. Q. Wong, Y. R. Lou, and K. Reuhl, Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoyl-phorbol-13- acetate in the skin of SKH-1 mice, Cancer Res., 52, 1162 (1992)
  10. A. H. Conney, Y. P. Lu, Y. R. Lou, and M. T. Huang, Inhibitory effects of tea and caffeine on UV-induced carcinogenesis: relationship to enhanced apoptosis and decreased tissue fat, Eur. J. Cancer Prev., 11 (2002)
  11. P. M. Elias and E. H. Choi, Interactions among stratum corneum defensive functions, Exp. Dermatol., 14, 719 (2005) https://doi.org/10.1111/j.1600-0625.2005.00363.x
  12. S. M. Thacher and R. H. Rice, Keratinocyte-specific transglutaminase of cultured human epidermal cell: relation to cross-linked envelope formation and terminal differentiation, Cell, 40, 685 (1985) https://doi.org/10.1016/0092-8674(85)90217-X
  13. K. Hanley, Y. Jiang, and S. He, Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor PPAR-$\alpha$, J. Invest. Dermatol., 110, 368 (1998) https://doi.org/10.1046/j.1523-1747.1998.00139.x
  14. S. Balanehru and B. Nagarajan, Protective effect of oleanolic acid and ursolic acid against lipid peroxidation, Biochem. Int., 24, 981 (1991)
  15. H. K. Lee, G. W. Nam, S. H. Kim, and S. H. Lee, Phytocomponents of triterpenoids, oleanolic acid and ursolic acid, regulated differently the processing of epidermal keratinocytes via PPAR-$\alpha$ pathway, Exp. Dermatol., 15, 66 (2006) https://doi.org/10.1111/j.0906-6705.2005.00386.x
  16. K. Dvorakova, R. T. Dorr, S. Valcic, B. Timmermann, and D. S. Alberts, Pharmacokinetics of the green tea derivative, EGCG, by the topical route of administration in mouse and human skin, Cancer Chemother. Pharmacol., 43, 331 (1999) https://doi.org/10.1007/s002800050903
  17. C. Rodriquez-Caso, D. Agudo, F. Jimenez, and M. A. Median, Green tea epigallocatechin-3-gallate is an inhibitior of mammalian histidine decarboxyalse, Cell. Mol. Life Sci., 60, 1760 (2003) https://doi.org/10.1007/s00018-003-3135-3
  18. S. Balasubramanian, M. T. Sturniolo, G .R. Dubyak, and R. L. Eckert, Human epidermal keratinocytes undergo (-)-epigallocatechin-3-gallate-dependent differentiation but not apoptosis, Carcinogenesis, 26, 1100 (2005) https://doi.org/10.1093/carcin/bgi048
  19. S. H. Kim, G. W. Nam, H. K. Lee, S. J. Moon, and I. S Chang, The effects of Musk T on peroxisome proliferator-activated receptor [PPAR]-$\alpha$ activation, epidermal skin homeostasis and dermal hyaluronic acid synthesis, Arch. Dermatol. Res., 298, 273 (2006) https://doi.org/10.1007/s00403-006-0684-y
  20. N. Mahindroo, Y. H. Peng, C. H. Lin, E. Prakash, T. W. Lien, and I. L. Lu, Structural basis for the structure-activity relationships of on peroxisome proliferator-activated receptor agonists, J. Med. Chem., 49, 6421 (2006) https://doi.org/10.1021/jm060663c
  21. R. Kumar, U. Ramachandran, S. Raichur, R. Chakrabarti, and R. Jain, Synthesis and evaluation of N-acetyl-L-tyrosine based compounds as PPAR-alpha selective activators, Eur. J. Med. Chem., 42, 503 (2007) https://doi.org/10.1016/j.ejmech.2006.11.005