A Study on the Fracture Toughness of Plasma-treated Aluminum/Aluminum Foam Composites using Nitrogen Gas

알루미늄/발포알루미늄의 질소 플라즈마 표면처리에 따른 파괴인성평가

  • 정협재 (경희대학교 기계공학과) ;
  • 이경엽 (경희대학교 테크노공학대학.산학협력기술원) ;
  • 한범석 (자동차부품연구원) ;
  • 유용문 (자동차부품연구원)
  • Published : 2008.08.01

Abstract

Aluminum foam material has unique properties that make them useful in applications to the automobile, construction and railroad industries. In this study, aluminum was plasma-treated using nitrogen gas to improve fracture behavior between aluminum and aluminum foam material. SLS specimens were used for fracture tests. They were performed using plasma-treated and untreated aluminum/aluminum foam specimens. It was shown that the fracture strength and the tincture toughness of aluminum/aluminum foam were improved ${\sim}86%\;and\;{\sim}250%$, respectively when the aluminum was plasma-treated using nitrogen gas.

Keywords

References

  1. Paul, A., Seshacharyulu, T. and Ramamurty, U., "Tensile strength of a closed-cell al foam in the presence of notches and holes - Structure and Properties," Scripta materialia, Vol. 40, No. 7, pp. 809-814, 1999 https://doi.org/10.1016/S1359-6462(99)00037-8
  2. Papadopoulos, D. P., Konstantinidis, I. C., Papanastasiou, N., Skolianos, S., Lefakis, H. and Tsipas, D. N., "Mechanical properties of Al metal foams," Materials letters, Vol. 58, No. 21, pp. 2574-2578, 2004 https://doi.org/10.1016/j.matlet.2004.03.004
  3. Antoniou, A., Onck, P. R. and Bastawros, A. F., "Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam," Acta materialia, Vol. 52, No. 8, pp. 2377-2386, 2004 https://doi.org/10.1016/j.actamat.2004.01.028
  4. Kim, S. Y., Park, S. H., Um, Y. S. and Hur, B. Y., "Sound Absorption Properties of Al Foam," Materials science forum, Vol. 486/487, pp. 468-471, 2005 https://doi.org/10.4028/www.scientific.net/MSF.486-487.468
  5. Jiejun, W., Chenggong, L., Dianbin, W. and Manchang, G., "Damping and sound absorption properties of particle reinforced Al matrix composite foams," Composites science and technology, Vol. 63 No. 3/4, pp. 569-574, 2003 https://doi.org/10.1016/S0266-3538(02)00215-4
  6. Ramachandra, S., Sudheer Kumar, P. and Ramamurty, U., "Impact energy absorption in an Al foam at low velocities," Scripta materialia, Vol. 49, No. 8, pp. 741-745, 2003 https://doi.org/10.1016/S1359-6462(03)00431-7
  7. Asavavisithchai, S., Slater, D. and Kennedy, A. R. "Effect of tube length on the bucking mode and energy absorption of Al foam-filled tubes," Journal of materials science, Vol. 39, No. 24, pp. 7395-7396, 2004 https://doi.org/10.1023/B:JMSC.0000048759.96272.74
  8. Cheng, Q., Altenhof, W., Yi Jin, S., Powell, C. and Harte, A. M., "Energy absorption of aluminum foam filled braided stainless steel tubes under quasi-static tensile loading conditions," International journal of mechanical sciences, Vol. 48, No. 11, pp. 1223-1233, 2006 https://doi.org/10.1016/j.ijmecsci.2006.06.009
  9. Santosa, S. and Wierzbicki, T., "Crash behavior of box columns filled with aluminum honeycomb or foam," Computers & structures, Vol. 68, No. 4, pp. 343-367, 1998 https://doi.org/10.1016/S0045-7949(98)00067-4
  10. Zhang, X. and Cheng, G., "A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns," International journal of impact engineering, Vol. 34, No. 11, pp. 1739-1752, 2007 https://doi.org/10.1016/j.ijimpeng.2006.10.007
  11. Toda, H., Takata, M., Ohgaki, T., Kobayashi, M., Kobayashi, T., Uesugi, K. and Makii, K., Aruga, "3-D Image-Based Mechanical Simulation of Aluminium Foams: Effects of Internal Microstructure," Advanced engineering materials, Vol. 8, No. 6, pp. 459-467, 2006 https://doi.org/10.1002/adem.200600035
  12. Konstantinidis, I. Ch., Papadopoulos, D. P., Lefakis, H. and Tsipas, D. N., "Model for determining mechanical properties of aluminum closed-cell foams," Theoretical and applied fracture mechanics, Vol. 43, No. 2, pp. 157-167, 2005 https://doi.org/10.1016/j.tafmec.2005.01.001
  13. Chung, H. J., Rhee, K. Y., Han, B. S. and Ryu, Y. M., "Plasma treatment using nitrogen gas to improve bonding strength of adhesively bonded aluminum foam/aluminum composite," Journal of alloys and compounds, Vol. 459, Issue 1-2, pp. 196-202, 2008 https://doi.org/10.1016/j.jallcom.2007.05.006
  14. Kitazono, K., Kitajima, A., Sato, E., Matsushita, J. and Kuribayashi, K., "Solid-state diffusion bonding of closed-cell aluminum foams," Materials science & engineering A, Vol. 327, No. 2, pp. 128-132, 2002 https://doi.org/10.1016/S0921-5093(01)01766-X
  15. Rhee, K. Y., Lee, S. G., Choi, N. S. and Park, S. J., "Treatment of CFRP by IAR method and its effect on the fracture behavior of adhesive bonded CFRP/aluminum composites," Materials Science and Engineering A, Vol. 357, No. 1/2, pp. 270-276, 2003 https://doi.org/10.1016/S0921-5093(03)00207-7
  16. Sanshis, M. R., Calvo, O., Fenollar, O., Garcia, D. and Balart, R., "Surface Modification of a Polyurethane Film by Low Pressure Nitrogen Plasma for Improved Adhesion to Polyethylene Foam for Automotive Industry Laminates," Plasma Processes and Polymers, Vol. 4, No. s1, pp. 1091-1097, 2007 https://doi.org/10.1002/ppap.200732411
  17. Rhee, K. Y., Kim, M. T. and Choi, N. S., "A Study on the Fracture Toughness Improvement of Surface-treated CFRP and Aluminum Composites," Korean Society of Mechanical Engineers A, Vol. 27, No. 4, pp. 632-637, 2003 https://doi.org/10.3795/KSME-A.2003.27.4.632