북부 동중국해 생태계의 NEMURO모델에 의한 하위생태계 분석

이종희*· 장창익 부경대학교 해양생산관리학과

Analysis of the Lower Trophic Level of the Northern East China Sea Ecosystem based on the NEMURO Model

JONG HEE LEE* AND CHANG IK ZHANG

Department of Marine Production Management, Pukyong National University, Busan 608-737, Korea

NEMURO 모델은 태양복사에너지와 표충수온자료를 사용하여 해양의 하위영양단계의 인자들 사이의 상호작용을 효과적으로 이해하기 위하여 개발된 모델이다. 본 연구에서 영양염과 플랑크톤의 계절적 변동을 분석하였으며, 2002 년부터 2005년 사이의 플랑크톤 생산량과 생체량을 추정하였다. 모델 내에서 식물플랑크톤이 직접적으로 이용하는 영양염인 NO₃, NH₄ 및 Si(OH)₄는 식물플랑크톤의 대번식시기 이전에 높은 농도를 나타내었다. 플랑크톤의 사망이 나 배설에 의해 재생되는 영양염인 DON, PON 및 Opal은 플랑크톤의 대번식시기와 동시에 높은 농도를 나타내었 다. NEMURO 모델에서 추정된 식물과 동물플랑크톤은 3월과 8월에 높은 생체량을 보인다. 이는 모델이 적용된 지 역에서 관측된 chlorophyll a와 유사한 형태를 나타내었다. 식물플랑크톤의 생체량은 동물플랑크톤보다 더 컸으며, 포식형 동물플랑크톤의 연평균 생체량은 소형과 대형 동물플랑크톤보다 크게 나타내었다.

The NEMURO model is aimed to efficiently understand the interaction among factors of lower trophic level of a marine ecosystem, using data on solar radiation and sea water temperature. In this study, we analyzed the seasonal pattern of nutrients and planktons, and estimated productivity and biomass of planktons from 2002 to 2005. Nutrients (NO₃, NH₄, and Si(OH)₄) which were used by phytoplankton showed a high concentration before the bloom of phytoplankton. Nutrients (DON, PON, and Opal) which were a byproduct of phytoplankton showed a high concentration in the same period as the bloom of phytoplankton. Both phytoplankton and zooplankton had two peaks in March and August. Estimated phytoplankton biomass from the NEMURO model showed a similar pattern with observed chlorophyll a concentrations. Biomasses of phytoplankton were bigger than those of zooplankton. Annual mean biomass of small and large phytoplankton was greater than those of small and large zooplankton.

Keywords: East China Sea, NEMURO Model, Lower Trophic Level

서 론

영양염 - 식물플랑크톤 - 동물플랑크톤(NPZ; Nutrients - Phytoplankton - Zooplankton) 모델은 해양에서 하위영양단계 생물들의 역학을 잘 표현하는 유용한 도구이다. NPZ 모델에 대한 연구는 대개 간 단한 모델의 완벽한 이해로부터 시작해서, 간단한 모델로 해양현 상을 시뮬레이션하고 설명할 수 없을 때에는 점차 더 복잡한 모 델을 사용한다. 흔히, 생태계 모델링의 결과는 실제 해양현상과 는 다르게 나타날 수 있지만, 하위영양단계의 실제적인 현상을 표현하는데 유용하다고 알려져 있다(Franks, 2002). NPZ 모델을 비롯한 생태계 모델의 적용은 모의실험을 통해서 생태계 구조를 실제 환경에 근접하게 표현하는 데에 목적을 두고 있다(김과 조, 1998).

NPZ 모델의 하나로 북태평양 해역을 대상으로 개발된 NEMURO 모델은 세계 여러 나라의 과학자들이 2000년 일본의 NEMURO 에서 개최한 워크샵에서 개발되었다. NEMURO 모델은 모델의 변 수들을 평가하고, 모델의 기준 정점을 선정해서 채택된 자료들을 모델에 적용 비교하여 지역적인 대조 작업을 수행하여 개발되었 다. 참가자들은 기본 모델의 이름을 NEMURO, 지역 해양학을 위 한 북태평양 생태계 모델(NEMURO; North Pacific Ecosystem Model for Understanding Regional Oceanography)이라 명명했다 (Eslinger *et al.*, 2002; Kishi *et al.*, 2007).

NEMURO 모델은 북태평양의 다양한 해양현상을 해석하고 이 해하기 위하여 여러 지역에 적용되었다. NEMURO 모델은 일차

^{*}Corresponding author: francis@pknu.ac.kr

원 수직혼합모델을 포함시켜 정점 A-7(Yamanaka et al., 2004)과 KNOT(Fujii et al., 2002)에 적용된 바 있으며, Aita et al.(2003) 은 삼차원 수직혼합모델을 NEMURO 모델에 결합하여 정점 P, A-7과 KNOT에 적용하였다. Yoshie et al. (2003)은 정점 A-7에 동 물플랑크톤 수직회유의 효과를 평가하는데 이 모델을 사용하였으 며, Kishi et al. (2004)은 서부 태평양의 입자 유동 시뮬레이션을 위하여 NEMURO 모델을 사용하였다. 최근 어류의 생에너지역학 에 의한 성장 모델과 NEMURO 모델이 결합된 NEMURO.FISH 모델이 개발되어 북동태평양 청어와 북동태평양 정어리에 적용되 었다(Ito et al., 2004; Megrey et al., 2007). NEMURO.FISH 모 델은 기본적인 NEMURO 모델에 생에너지역학적 모델(Bioenergetics model)이 포함된 것으로, 동·식물플랑크톤 및 영양염의 거동에 어 류를 포함한 NPZF(nutrients, phytoplankton, zooplankton, fish) 모 델이다. 이 모델에서는 한 종에 대한 어류만을 대상으로 하며, 이 어류는 동물플랑크톤 만을 직접 섭이해야 한다. 에너지 흐름에 대 한 방정식은 기본 NEMURO 모델과 동일하지만, 기존의 11가지 구성요소에 어류항목이 추가되며, 이 어류항목은 어류의 먹이가 되는 동물플랑크톤, 어류가 배설하는 입자형유기물질과 암모늄에 만 직접 연결되는 것으로 되어 있다. NEMURO.FISH의 생에너지 역학적 모델은 Rudstam(1988)에 의한 대서양 청어(Clupea harengus) 모델에 바탕을 두고 있다(Ito et al., 2004). 한편, 어류의 성장에 미치는 기후효과를 추가하기 위해 이 NEMURO.FISH 모델에 생 지화학적인 부분을 결합시킨 모델이 최근 개발 중에 있다(Megrey et al., 2007).

본 논문에서는 가장 기본적인 1-demension의 NEMURO 모델 을 동중국해 북부해역에 적용하여 이 해역의 하위생태계를 분석 하였는데, 영양염과 동·식물플랑크톤의 계절적 변동을 구현하고 Ecopath와 같은 중상위 생태계 모델의 기초 입력 자료로 사용되 는 동·식물플랑크톤의 생체량(B)과 생산량(P), 그리고 P/B 값들 을 추정하였다.

자료 및 방법

NEMURO model

NEMURO 모델은 해양의 하위생태계를 기반으로 하여, 차분방 정식과 처리방정식으로 11가지 인자들에 대한 초기 값과 이들 사 이의 변동과정으로 구성되어있다. 각각의 구성 인자들은 질산염 (NO3), 암모늄(NH4), 입자형 유기질소(PON), 용존 유기질소(DON), 입자형 유기규소(Opal), 규산염(Si(OH)4), 소형 식물플랑크톤 생체 량(PS), 대형 식물플랑크톤 생체량(PL), 소형 동물플랑크톤 생체량 (ZS), 대형 플랑크톤 생체량(ZL), 그리고 포식형 동물플랑크톤 생 체량(ZP)이다. 모델 내에서 플랑크톤의 분류는 크기에 따른 것이며, 식물플랑크톤의 경우 소형은 편모조류(flagellates)와 석회조류 (coccolithophorids)를 포함하고 대형은 규조류(diatom)를 지칭한다. 동물플랑크톤의 경우는 소형은 유공충류(foraminifera), 대형은 요 각류(copepods)이고 포식형은 크릴류나 해파리류를 포함한다(Kishi et al., 2006). Fig. 1은 NEMURO 모델의 개요도로서 동·식물플랑 크톤과 영양염 사이의 에너지 흐름을 나타내고 있다. 직선과 점선 은 질소 및 규소의 순환을 나타낸다. 각 인자들 사이의 관계는 영 양염과 식물플랑크톤의 광합성, 호흡, 분해, 질산화 작용, 침강과 동 물플랑크톤의 사망, 호흡, 섭이, 배설, 수직회유 등이 관여된다.

자 료

본 연구에서 NEMURO model에 사용된 자료는 모델 내의 기 본 입력 값과 이전의 논문을 참고하여 적용하였다(Kishi *et al.*, 2001, 2007; Ito *et al.*, 2004, 2007; Megrey *et al.*, 2007; Rose *et al.*, 2007) (Table 1). 수온은 계절별(2, 5, 8, 11월)로 측정되는 국 립수산과학원의 해양환경조사자료와 격월(2, 6, 8, 10, 12월)로 조 사되는 정선관측자료를 사용하였으며, 클로로필 *a*는 해양환경조 사자료를 사용하였다. 정점은 전남 여수와 경남 남해 주변 해역에 위치한 해양환경조사 정점(원형)과 그 주위의 정선 205, 205와 206

Fig. 1. Food web diagram of the 11 state variables represented in the NEMURO model showing the key processes and the flows of nitrogen and silica. Solid arrows indicate nitrogen flows and dashed arrows indicate silicon. Dotted arrows represent the exchange or sinking of the materials between the modeled box below the mixed layer depth (Kish *et al.*, 2007; Rose *et al.*, 2007).

Unit

IoptS	Optimum light intensity	0.15	lymin ⁻¹
VmaxS	Maximum photosynthetic rate at 0 °C	$0.4 \times d2s^{-1}$	sec ⁻¹
KNO ₃ S	Half saturation constant for NO ₃	1.0e-06	molNl ⁻¹
KNH_4S	Half saturation constant for NH ₄	0.1e-06	molNl ⁻¹
γS	NH4 inhibition rate	1.5e+06	$(molNl^{-1})^{-1}$
kGppS	Temperature coefficient for photosynthetic rate	0.0693	°C-1
MorPS0	Mortality rate at 0 °C	0.67708	(molNl ⁻¹) ⁻¹ day ⁻¹
KMorPS	Temperature coefficient for mortality	0.0693	°C-1
ResPS0	Respiration rate at 0 °C	3.4722e-07	sec ⁻¹
KResPS	Temperature coefficient for respiration	0.0693	°C-1
γS	Ratio of extracellular excretion to photosynthesis	0.135	No dimension
	Large Phytoplankton (PL)		
IoptL	Optimum light intensity	0.15	lymin ⁻¹
VmaxL	Maximum photosynthetic rate at 0 °C	$0.8 \times d2s^{-1}$	sec ⁻¹
KNO ₃ L	Half saturation constant for NO ₃	3.0e-06	molNl ⁻¹
KNH_4L	Half saturation constant for NH ₄	0.3e-06	molNl ⁻¹
KSiL	Half saturation constant for Si	6.0e-06	molSil ⁻¹
ψL	NH4 inhibition rate	1.5e+06	$(molNl^{-1})^{-1}$
kGppL	Temperature coefficient for photosynthetic rate	0.0693	°C-1
MorPL0	Mortality rate at 0 °C	0.3356	(molNl ⁻¹) ⁻¹ day ⁻¹
KMorPL	Temperature coefficient for mortality	0.0693	°C-1
ResPL0	Respiration rate at 0 °C	3.472222e-07	sec ⁻¹
KResPL	Temperature coefficient for respiration	0.0693	°C-1
γL	Ratio of extracellular excretion to photosynthesis	0.135	No dimension
	Small Zooplankton (ZS)		
GRmaxSps	Maximum rate of grazing PS at 0 °C	$0.4 \times d2s^{-1}$	sec ⁻¹
kGraS	Temperature coefficient for grazing	0.0693	°C-1
λS	Ivlev constant	1.4	$(molNl^{-1})^{-1}$
PS2ZS*	Threshold value for grazing PS	0.043e-06	molNl ⁻¹
AlphaZS	Assimilation efficiency	0.7	No dimension
BetaZS	Growth efficiency	0.3	No dimension
MorZS0	Mortality rate at 0 °C	0.677	(molNl ⁻¹) ⁻¹ day ⁻¹
KMorZS	Temperature coefficient for mortality	0.0693	°C-1
	Large Zooplankton (ZL)		
GRmaxLps	Maximum rate of grazing PS at 0 °C	$0.1 \times d2s^{-1}$	sec ⁻¹
GRmaxLpl	Maximum rate of grazing PL at 0 °C	$0.4 \times d2s^{-1}$	sec ⁻¹
GRmaxLzs	Maximum rate of grazing ZS at 0 °C	$0.4 \times d2s^{-1}$	sec ⁻¹
kGraL	Temperature coefficient for grazing/predation	0.0693	°C-1
λL	Ivlev constant	1.4	$(molNl^{-1})^{-1}$

Table 1. Parameters used for the NEMURO model in the northern East China Sea. Values in bold are calibrated values that differ from those reported in Kishi *et al.* (2007) and Megrey *et al.* (2007).

Small Phytoplankton (PS)

Value

선의 01정점(사각형)의 관측자료이며(Fig. 2), 사용된 자료는 2002 년부터 2005년까지에 대한 국립수산과학원 홈페이지로부터 얻은 해양환경자료(NFRDI, 2003-2006a)와 해양조사연보의 정선관측자

Threshold value for grazing PS

Threshold value for grazing PL

Threshold value for grazing ZS

Temperature coefficient for mortality

Assimilation efficiency

Growth efficiency

Mortality rate at 0 °C

Parameter

PS2ZL*

PL2ZL*

ZS2ZL*

AlphaZL

BetaZL

MorZL0

KMorZL

Description

료(NFRDI, 2003-2006b)이다. 태양복사에너지 값은 Ito *et al.* (2007) 에 의한 30°~35°N 사이의 한국 남해안을 포함하는 지역의 자료를 사용하였다.

4.0e-08

4.0e-08

4.0e-08

0.7

0.3

0.677

0.0693

molNl⁻¹

molNl⁻¹

molNl⁻¹

 $^{\circ}C^{-1}$

No dimension

No dimension

(molNl⁻¹)⁻¹sec⁻¹

Table 1. Continued

Parameter	Description	Value	Unit				
Predatory Zooplankton (ZP)							
GRmaxPpl	Maximum rate of grazing PL at 0 °C	0.2×d2s ⁻¹	sec ⁻¹				
GRmaxPzs	Maximum rate of grazing ZS at 0 °C	$0.2 \times d2s^{-1}$	sec ⁻¹				
GRmaxPzl	Maximum rate of grazing ZL at 0 °C	0.2×d2s ⁻¹	sec ⁻¹				
kGraP	Temperature coefficient for grazing/predation	0.0693	°C-1				
λΡ	Ivlev constant	1.4	$(molNl^{-1})^{-1}$				
PL2ZP*	Threshold value for grazing PL	4.0e-08	molNl ⁻¹				
ZS2ZP*	Threshold value for grazing ZS	4.0e-08	molNl ⁻¹				
ZL2ZP*	Threshold value for grazing ZL	4.0e-08	molNl ⁻¹				
ψPL	Preference coefficient for PL	4.605e+06	$(molNl^{-1})^{-1}$				
ψZS	Preference coefficient for ZS	3.01e+06	$(molNl^{-1})^{-1}$				
AlphaZP	Assimilation efficiency	0.7	No dimension				
BetaZP	Growth efficiency	0.3	No dimension				
MorZP0	Mortality rate at 0 °C	0.677	(molNl ⁻¹) ⁻¹ sec ⁻¹				
KMorZP	Temperature coefficient for mortality	0.0693	°C ⁻¹				
	Other parameters						
Nit0	NH4 nitrification rate at 0 °C	0.34722e-06	sec ⁻¹				
KNit	Temperature coefficient for nitrification	0.0693	°C-1				
VP2N0	PON decomposition rate to NH ₄ at 0 °C	1.1574e-06	sec ⁻¹				
KP2N	PON temperature coefficient for decomposition to NH4	0.0693	°C-1				
VP2D0	PON decomposition Rate to DON at 0 °C	1.1574e-06	sec ⁻¹				
KP2D	PON temperature coefficient for decomposition to DON	0.0693	°C-1				
VD2N0	DON decomposition Rate to NH4 at 0 °C	2.3148e-06	sec ⁻¹				
KD2N	DON temperature coefficient for decomposition to NH ₄	0.0693	$^{\circ}C^{-1}$				
VO2S0	Opal decomposition Rate to Silicate at 0 °C	1.1574e-06	sec ⁻¹				
KO2S	Opal temperature coefficient for decomposition to Silicate	0.0693	°C-1				
RSiN	Si/N ratio	2.0	molSimolN ⁻¹				
RCN	C/N ratio	6.625	molCmolN ⁻¹				
setVPON	Settling velocity of PON	4.6296e-04	ms ⁻¹				
setVOpal	Settling velocity of Opal	4.6296e-04	ms ⁻¹				
TNO₃d	Nitrate Concentraion in the Deep Layer	25.0e-06	molNl ⁻¹				
SiOH ₄ d	Silicate Concentraion in the Deep Layer	35.0e-06	molSil ⁻¹				

방 법

아래의 식 (1)과 (2)는 비선형 최소자승법을 사용하여 수온과 태 양복사에너지 자료를 각각의 사인곡선(sinusoid)으로 나타낸 것이 다. NEMURO 모델 내의 입력 자료는 일일단위의 자료가 사용되 며, 이에 따라 추정되는 동·식물플랑크톤의 생체량 및 영양염은 일 년을 주기로 일일 값으로 추정된다.

$$8.24 + \left(17.78 \cdot 0.5 \cdot \left(1 - \cos\left(\frac{2 \cdot \pi \cdot (JDAY - 30)}{365}\right)\right)\right)$$
(1)

$$0.075 + \left(0.06 \cdot 0.5 \cdot \left(1 - \cos\left(\frac{2 \cdot \pi \cdot (JDAY + 7)}{365}\right)\right)\right)$$
(2)

여기서, JDAY는 율리우스일(Julian day)로 각 년도의 1일부터 365 일 까지를 의미한다.

NEMURO 모델로 추정한 영양염과 동·식물플랑크톤의 계절적 변동현상에 대한 시뮬레이션 결과를 검증하기 위해서, 모델에서 추정된 식물플랑크톤 농도와 남해도 남안에서 실측한 클로로필 *a* 값의 상관관계를 구하였다. 추정된 식물플랑크톤의 생체량은 소형 과 대형으로 나눠진 값들을 더해서 사용하였다. 관측된 클로로필 a 값은 월평균치이므로 추정된 식물플랑크톤의 생체량도 월평균 치를 구하여 사용하였다.

NEMURO 모델은 NPZ 모델로서 크게 세 가지 상태 변수(영양 염-식물플랑크톤-동물플랑크톤)에 대한 방정식이 골격을 이룬다. 이 방정식들은 식물플랑크톤의 빛에 대한 반응 *f*(*I*), 식물플랑크 톤의 영양염 흡수 *g*(*N*), 동물플랑크톤의 섭이 *h*(*P*), 그리고 식물 플랑크톤 *i*(*P*)과 동물플랑크톤 *j*(*Z*)의 사망, 배설과 모델 내에 포 함되지 않은 생물에 의한 포식으로 인한 손실 등이다(Parsons *et al.*, 1984; Franks, 2002). 먼저, 빛에 대한 식물플랑크톤의 반응은 식 (3)와 같이 나타내어 사용하였다.

$$f(I) = \frac{I}{I_0} \exp\left(1 - \frac{I}{I_0}\right) \tag{3}$$

여기서, I는 광도이며, Io는 광합성이 최대일 때의 광도이다.

일반적으로 대부분의 식물플랑크톤에 의한 영양염 흡수 g(N)은 포화한 직각 쌍곡선인 Michealis-Menten 방정식에 의해 식 (4)와

Fig. 2. Location of the study area in the northern East China Sea. Circles are the coastal environment monitoring stations. Squares are the serial oceanographic observation stations.

같이 나타낸다.

$$g(N) = \frac{V_m \times N}{k_s + N} \tag{4}$$

여기서, Vm은 최대 영양염 흡수율이며, k,는 영양염 흡수율이 최대 의 절반 정도인 경우의 기저농도, N은 영양염의 농도이다.

동물플랑크톤의 섭이(*h*(*P*))에 관한 방정식은 식 (5)와 같이 모 델을 안정화 할 수 있는 섭이 한계(grazing thresholds)가 포함된 것이다.

$$h(P) = R_{\max}[1 - \exp(-\lambda(P_0 - P))]$$
(5)

여기서, *R*max는 동물플랑크톤의 최대섭이량, *P*₀는 식물플랑크톤의 밀도, *P*는 식물플랑크톤의 최소 또는 한계밀도, 그리고 λ는 비례 상수이다.

식물플랑크톤 *i*(*P*)와 동물플랑크톤 *j*(*Z*)의 사망 또는 감소를 나 타내는 방정식은 동·식물플랑크톤의 생체량이 많은 경우 사망률 도 높은 밀도 종속적 변동을 나타내는 식 (6)과 식 (7)로 나타내었다.

$$i(P) = \varepsilon P \tag{6}$$

 $i(Z) = \varepsilon Z \tag{7}$

여기서, ɛ은 동·식물플랑크톤의 사망률이며, P와 Z는 각각의 밀도 이다.

NEMURO 모델에서 동·식물플랑크톤의 생체량을 구하는 식은 식 (8)~(12)에서 소형 식물플랑크톤은 PS, 대형 식물플랑크톤은 PL, 소형 동물플랑크톤은 ZS, 대형 동물플랑크톤은 ZL, 그리고 포 식형 동물플랑크톤의 생체량을 구하는 방정식은 ZP로 각각 나타 내었다.

PS=GppPSn-ResPSn-MorPSn-ExcPSn-GraPS2ZSn	
- GraPS2ZLn	(8)
PL=GppPLn-ResPLn-MorPLn-ExcPLn-GraPS2ZLn	
– GraPL2ZPn	(9)
ZS=GraPS2ZSn-GraZS2ZLn-MorZSn-ExcZSn-EgeZ	Sn
- GraZS2ZPn	(10)
ZL=GraPL2ZLn+GraZS2ZLn-MorZLn-ExcZLn-EgeZ	ZLn
+ GraPS2ZLn- GraZL2ZPn	(11)
ZP=GraPL2ZPn+GraZS2ZPn-MorZPn-ExcZPn-EgeZ	Pn
+ GraZL2ZPn	(12)

여기서, GppPSn은 소형식물플랑크톤의 총기초생산율(gross primary production rate), GppPLn는 대형 식물플랑크톤의 총기초 생산율이다. ResPSn와 ResPLn은 각각 소형과 대형 식물플랑크톤의 호흡률이다. MorPSn, MorPLn, MorZSn, MorZLn 그리고 MorZPn 는 각 동·식물플랑크톤의 사망률(mortality rate)이다. ExcPSn와 ExcPLn은 소형과 대형 식물플랑크톤의 세포외배출률(extracellular excretion rate)이다. 그리고 ExcZSn, ExcZLn, ExcZPn은 각 동물 플랑크톤의 암모늄(NH4)의 배설률(excretion rate)이다. EgeZSn, EgeZLn, EgeZPn는 각 동물플랑크톤의 입자형 영양염(PON, Opal) 의 배설률(egestion rate)이다. GraPS2ZSn는 소형 식물플랑크톤이 소형 동물플랑크톤에 섭이되는 비율(grazing rate), GraPS2ZLn는 소형 식물플랑크톤이 대형 동물플랑크톤에 섭이되는 비율, GraPL2ZLn과 GraPL2ZPn은 각각 대형 식물플랑크톤이 대형과 포식형 동물플랑크톤에 섭이되는 비율이다. GraZS2ZLn과 GraZS2ZPn은 각각 소형 동물플랑크톤이 대형과 포식형 동물플랑 크톤에 섭이되는 비율이며, GraZL2ZPn는 대형 동물플랑크톤이 포식형 동물플랑크톤에 섭이되는 비율이다.

동·식물플랑크톤의 생산량을 구하는 식은 식 (13)~(17)로 각각 나타내었다.

$PPtotPS = GppPSn \times MLD$	(13)
PPtotPL=GppPLn×MLD	(14)
PPtotZS=(GraPS2ZSn-ExcZSn-EgeZSn)×MLD	(15)
PPtotZL=(GraPS2ZLn+GraPL2ZLn+GraZS2ZLn-ExcZ	Ln
- EgeZLn)×MLD	(16)
PPtotZP=(GraPL2ZPn+GraZS2ZPn+GraZL2ZPn-ExcZ	Pn
$-$ EgeZPn) \times MLD	(17)

여기서, 소형 식물플랑크톤의 생산량을 구하는 방정식은 PPtotPS, 대형 식물플랑크톤은 PPtotPL, 소형 동물플랑크톤은 PPtotZS, 대 형 동물플랑크톤은 PPtotZL, 그리고 포식형 동물플랑크톤의 생산 량을 구하는 방정식은 PPtotZP로 나타내었다. 생산량을 구하는 식 의 각 항은 생체량을 구하는 식과 동일하다. MLD는 혼합층의 수 심으로 단위는 m이며, 일 년을 2개의 계절로 구분하여 동일한 수 심으로 곱하였다.

마지막으로 연간 생산량/생체량 비(P/B ratio)를 구하였다. 각 연의 생산량의 총합(P)과 평균 생체량(B)을 나누어 계산하여, 연 평균 P/B를 나타내었다. 생산량은 단위가 mg m⁻²day⁻¹이므로, 생 체량 역시 동일한 혼합층 수심을 곱하여 단위를 mg m⁻³day⁻¹에서 mg m⁻²day⁻¹로 변환한 후 P/B를 계산하였다(Aydin *et al.*, 2003).

결 과

영양염과 동 식물플랑크톤의 변동

2002년부터 2005년까지 시간에 따른 영양염과 동·식물플랑크 톤의 변동을 NEMURO 모델을 사용하여 추정한 결과 대체로 계 절변동은 강하고, 경년변동은 약하게 나타났다(Fig. 3).

식물플랑크톤이 직접 이용하는 세 가지 영양염 중 질산염(NO₃) 의 농도 변화는 4월부터 급격한 증가를 보여 7월에 가장 높은 값 을 나타내었으며, 8월에 급격한 감소하여 9월에 최소농도를 나타 내었다. 암모늄(NH4)의 농도 역시 질산염과 변동형태가 유사하며, 6월에 최대농도와 3월에 최소농도를 나타내었다(Fig. 3(a)). 규산 염의 농도는 6월에 최고농도를 나타내었으며, 8월에 최소농도를 보인 후 12월까지 다시 상승하였다(Fig. 3(b)). 동·식물플랑크톤에 의한 부산물로 나타나는 영양염은 입자형 유기규소, 용존 유기질 소와 입자형 유기질소이며, 이들은 식물플랑크톤이 직접 이용하는 영양염보다 최댓값에 이르는 시기가 한, 두 달 느렸다. 먼저 입자 형 유기규소는 3월에 최소농도를 나타낸 후 뚜렷한 증가를 보이 며 7월에 최댓값에 달하였다(Fig. 3(b)). 입자형 유기질소와 용존 유기질소는 8월에 최대농도를 나타내었다. 최솟값을 가지는 시기 는 달랐는데, 입자형 유기질소는 1월에, 용존 유기질소는 5월로 나 타났다(Fig. 3(c)).

식물플랑크톤의 생체량의 변동은 일 년에 두 번의 대발생을 하

Fig. 3. Predicted nutrient concentrations for four year simulations in the northern East China Sea.

Fig. 4. Predicted (a) phytoplankton, and (b) zooplankton biomass for four year simulations in the northern East China Sea.

였다(Fig. 4). 소형 식물플랑크톤은 3월과 8월에 대발생을 하였으 며, 이 기간 5월과 10월에 생체량이 낮았다. 대형 식물플랑크톤은 1월과 7월에 대발생을 하였으며, 생체량이 낮았던 시기는 4월과 10월이었다. 대형 식물플랑크톤은 소형 식물플랑크톤에 비하여 4월의 생체량 감소가 뚜렷하지 않았다. 소형 식물플랑크톤은 8월 과 5월에 각각 최대 생체량과 최소 생체량을 나타내었다. 대형 식 물플랑크톤의 최대 생체량은 소형 식물플랑크톤보다 한 달 앞선 7월에 나타냈으며, 최소 생체량은 10월에 나타났다(Fig. 4(a)).

동물플랑크톤도 식물플랑크톤과 유사한 생체량이 높은 시기가 연 중 2회 나타났다. 소형 동물플랑크톤의 생체량은 5월과 11월에 극대기를 가졌으며, 2월과 8월에 생체량이 낮은 시기를 보였다. 소 형의 주된 극대기는 11월이었으며, 8월에 가장 낮은 생체량을 보 였다. 대형과 포식형 동물플랑크톤은 소형과는 반대로 나타났으며, 대형은 2월과 8월에 극대기를 보였으며, 5월과 11월에 낮은 생체 량을 가졌다. 포식형 동물플랑크톤의 경우는 대형보다 한 달 늦은 3월과 9월에 극대기를 가졌으며, 6월과 10월에 낮은 생체량을 가 졌다. 생체량이 높은 두 시기 중에서 주된 극대기는 대형 동물플 랑크톤의 경우 8월이었으며, 포식형은 9월이었다. 최저 생체량을 나타낸 시기는 대형은 5월, 포식형은 6월 이었다(Fig. 4(b)).

식물플랑크톤의 실측치와 모델 추정치 사이의 관계

한국 남해안에서 실측된 클로로필 a의 농도는 2002년에 8월이 가장 높았고 5월이 가장 낮았으며, 2003년에는 2월과 5월에 높았 으며 이후에 농도가 감소하는 형태를 보여 11월이 가장 낮았다. 2004년의 8월에는 실측한 클로로필 a의 농도에 대한 자료가 없었 으므로 정확한 계절변동을 알 수 없었다. 2005년의 경우 역시 5 월이 낮고, 8월에 클로로필 a의 농도가 높았다. NEMURO 모델로 추정한 식물플랑크톤의 생체량은 경년변동이 약하게 나타났으며, 2002년부터 2005년까지 5월에 최솟값, 8월에 최댓값을 보였다. 연 구 기간 동안 실측된 클로로필 a 농도와 추정한 식물플랑크톤의 생체량은 절댓값은 다르지만, 계절변동의 패턴은 2005년이 가장 유

Fig. 5. Time series of Chl-a concentration in the northern East China Sea from 2002 to 2005. Open circles are phytoplankton biomass. Closed circles are Chl-*a* concentration.

Fig. 6. Monthly averages of Chl-a concentration from 2002 to 2005 in the northern East China Sea. Open circles are phytoplankton biomass. Closed circles are Chl-a concentration.

사하였다. 2004년 2월과 2005년 5월과 11월에 실측치와 추정치가 비슷하였다(Fig. 5). 실측된 클로로필 *a* 농도와 추정된 식물플랑크 톤 생체량과의 상관계수는 0.591(P<0.05)로 유의하였다.

2002년부터 2005년까지 관측된 클로로필 a 농도의 월평균치와, NEMURO 모델로 추정된 식물플랑크톤 생체량의 월평균치를 Fig. 6과 같이 나타내었다. 월평균 클로로필 a 농도는 5월이 낮고 8월 이 높았으며, 추정된 식물플랑크톤의 월평균 생체량 역시 5월이 낮고 8월이 높았다. 모델을 통해 추정된 식물플랑크톤의 생체량과 실측된 클로로필 a 농도는 계절변동 형태와 절댓값에서 아주 유 사한 경향을 보였다(Fig. 6). 이 둘 사이의 상관계수는 0.991 (P<0.01) 로 통계학적으로 아주 유의하였다.

동·식물플랑크톤의 생체량과 P/B의 추정

Table 2는 모델로 추정된 동·식물플랑크톤의 월평균 생체량을 나타낸 것이다. 소형 식물플랑크톤의 생체량 변동 범위는 20.976~46.056 μg *l*⁻¹이었으며, 연평균 생체량은 30.938 μg *l*⁻¹이었 다. 대형 식물플랑크톤의 생체량 변동 범위는 9.830~20.964 μg *l*⁻¹이 었으며, 연평균 생체량은 14.058 μg *l*⁻¹이었다. 동물플랑크톤은 식 물플랑크톤에 비하여 낮은 생체량을 가졌다. 동물플랑크톤 사이의 생체량은 포식형, 대형, 소형의 순이었으며, 생체량 변동범위는 소 형은 2.200~3.097 μg *l*⁻¹, 대형은 4.286~7.821 μg *l*⁻¹, 그리고 포식 형의 경우는 9.515~12.763 μg *l*⁻¹ 사이였다.

NEMURO 모델을 사용하여 동·식물플랑크톤의 생산량을 추정 하였다(Table 3). 소형 식물플랑크톤 생산량의 변동 범위는 8.457~ 43.435 mg m²day¹⁰이며, 대형 식물플랑크톤은 4.055~32.140 mg m²day⁻¹ 사이였다. 식물플랑크톤의 월평균 생산량은 소형의 경우 20.666 mg m² day⁻¹이고, 대형은 11.102 mg m⁻²day⁻¹이었다. 동물플랑크톤의 생산 량 변동범위는 소형은 0.385~2.154 mg m⁻²day⁻¹, 대형은 0.989~ 6.754 mg m²day⁻¹, 그리고 포식형의 경우는 0.449~2.911 mgm⁻²day⁻¹ 사이였다. 동물플랑크톤의 연평균 생산량은 대형, 포식형, 소형의 순이었으며, 그 값은 각각 2.473 mg m⁻²day⁻¹, 1.182 mg m⁻²day⁻¹, 1.111 mg m⁻²day⁻¹로 식물플랑크톤의 연평균 생산량보다 낮았다.

식물플랑크톤의 연평균 생산량/생체량 비(P/B ratio)는 소형은 182.8이고 대형은 197.2이었다. 동물플랑크톤의 연평균 P/B 비는 소형, 대형, 포식형의 순으로 값이 컸으며, 그 연평균 P/B 비는 각 각 111.5, 108.8, 27.4이었다. 플랑크톤의 연평균 P/B 비는 동물플 랑크톤이 식물플랑크톤보다 약 1.6~7.2배 작았다(Table 4).

고 찰

해양생태계의 최하위 단계인 영양염과 동식물 플랑크톤의 변동 은 이들을 먹이로 하는 상위영양단계의 어류와 포유동물에까지 연 쇄적인 영향을 준다. 따라서 하위생태계의 변동을 연구하는 것은 수산자원의 변동을 분석하는 것만큼 중요하다. NPZ 모델에 기초

Table 2. Monthly and annual mean biomass ($\mu g l^{-1}$) of phytoplankton and zooplankton in the northern East China Sea from 2002 to 2005

		(P.8 ·) · · F-·) · · F-·	I I I I I I I I I I I I I I I I I I I		
Month	Small Phytoplankton	Large Phytoplankton	Small Zooplankton	Large Zooplankton	Predatory Zooplankton
Jan.	33.464	17.622	2.377	7.448	12.047
Feb.	31.316	15.152	2.273	6.119	11.027
Mar.	34.807	13.534	2.711	5.873	11.590
Apr.	23.564	9.825	2.635	4.277	9.860
May	21.126	11.527	2.463	4.564	9.518
Jun.	20.971	13.387	2.228	5.113	10.023
Jul.	33.315	20.972	2.205	7.830	11.981
Aug.	45.864	17.883	2.713	7.180	12.748
Sep.	32.463	10.912	2.873	5.076	10.408
Oct.	30.497	9.960	3.095	5.031	9.553
Nov.	30.901	11.749	2.753	5.614	9.709
Dec.	33.239	16.318	2.578	6.013	11.220
Mean	30.961	14.070	2.575	5.928	10.807

Month	Small Phytoplankton	Large Phytoplankton	Small Zooplankton	Large Zooplankton	Predatory Zooplankton
Jan.	8.715	5.244	0.385	1.203	0.496
Feb.	8.457	4.427	0.382	0.997	0.449
Mar.	10.524	4.055	0.522	0.989	0.490
Apr.	15.915	7.692	1.162	1.666	1.018
May	24.765	15.127	1.724	3.129	1.723
Jun.	32.812	25.221	2.154	5.201	2.711
Jul.	43.435	32.140	1.933	6.754	2.911
Aug.	42.605	16.514	1.601	4.007	1.702
Sep.	23.275	7.646	1.324	2.008	1.015
Oct.	14.935	4.655	1.955	1.233	0.607
Nov.	12.583	4.964	0.704	1.229	0.549
Dec.	9.976	5.539	0.482	1.264	0.515
Mean	20.666	11.102	1.111	2.473	1.182

Table 3. Daily mean production (mg m⁻²day⁻¹) of phytoplankton and zooplankton in the northern East China Sea from 2002 to 2005

Table 4. The annual P/B ratio of	phyte	plankton and zoo	plankton in the northern	East China	a Sea from	2002 to 2005
----------------------------------	-------	------------------	--------------------------	------------	------------	--------------

Small Phytoplankton	Large Phytoplankton	Small Zooplankton	Large Zooplankton	Predatory Zooplankton
182.8	197.2	111.5	108.8	27.4

한 NEMURO 모델은 해양에서 하위생태계 내의 변동관계를 파악 하여, 플랑크톤을 먹이로 하는 중·상위 생물과의 관계를 유추하 는데 응용이 가능할 것으로 생각된다. 따라서 본 연구에서는 이 모델을 활용하여 북부 동중국해의 해양환경 자료를 사용하여 해 양의 하위생태계 구성인자들의 상호작용과 계절변동을 파악하고, 중·상위 생태계 모델의 기초 입력 자료로 사용하기 위해서 플랑 크톤의 생체량과 생산량을 추정하였다.

남해안 지역의 영양염 농도와 동 ·식물플랑크톤 생체량의 변동 관계에 있어서, 질산염, 암모늄 그리고 규산염은 플랑크톤의 대발 생이 나타나는 8월 이전인 6월과 7월에 높은 농도를 나타내었으 며, 입자형 유기 질소, 용존 유기 질소 그리고 입자형 유기 규소 는 플랑크톤 대발생 시기와 동일한 7월과 8월이었다. 식물플랑크 톤이 직접적으로 이용하는 영양염은 식물플랑크톤의 대발생이 나 타나기 이전에 높은 농도를 나타내었으며, 플랑크톤의 부산물로 나타나는 영양염은 플랑크톤 대발생 시기와 동일한 시기에 높은 농도를 나타낸 것으로 해석된다. NEMURO 모델을 통하여 추정 된 영양염의 계절적 변화는 동중국해 해역의 플랑크톤과 영양염 변동의 시기적인 특징만을 반영하지만, 영양염의 농도에 대한 부 분까지 동중국해 해역의 특징을 반영한다고 볼 수 없다. 영양염의 농도의 변동범위는 NEMURO 모델을 이용한 이전 연구들의 영양 염 범위를 크게 벗어나지 않기 때문에, 추정된 결과를 실제 측정 한 영양염 농도와의 비교가 어려우며 본 연구의 한계로도 생각된 다(Hashioka and Yamanaka, 2007; Kishi et al., 2007; Megrey et al., 2007).

본 연구에서 식물플랑크톤의 생체량 변동은 일 년에 두 번의 대 발생을 보였으며, 동물플랑크톤 역시 식물플랑크톤과 유사하게 생 체량이 높은 시기가 2회 나타났다. 이 결과는 이 등(2004)에 의한 식물플랑크톤은 변동과 유사하며, 김(1972)과 송(2002)에 의한 남 해에서는 동물플랑크톤이 7, 8월에 가장 풍부하다는 이전 연구 결 과와도 일치한다. 서와 최(2004)는 사계절 중 여름철의 동물플랑 크톤의 생체량이 높은 이유를 고수온으로 인한 동물플랑크톤의 대 량번식 때문이라 주장하였다. 그리고 이러한 현상은 고수온기에 동물플랑크톤이 많이 출현하고 저수온기에 동물성플랑크톤이 적 게 출현한다는 보고와 일치하였다(Soh and Suh, 1993).

식물플랑크톤과 동물플랑크톤의 관계 역시 영양염과 식물플랑 크톤의 관계와 유사하게 나타내었다. 소형과 대형 식물플랑크톤은 각각 8월과 7월에 대발생 하였으며, 대형과 포식형 동물플랑크톤 은 식물플랑크톤의 대발생시기와 같거나 한 달 늦은 8월과 9월에 최대 생체량을 나타냈다. 그리고 상대적으로 생체량이 낮은 보이 는 소형 동물플랑크톤은 11월에 생체량이 높았고, 8월이 낮았다. 소형 식물플랑크톤을 먹이로 하는 소형 동물플랑크톤은 식물플랑 크톤의 대발생 이후에 동물플랑크톤의 생체량이 증가하는 것으로 나타났다. 그리고 소형 동물플랑크톤의 생체량은 대형과 포식형 동물플랑크톤의 생체량이 높았던 시기에 낮고, 낮았던 시기는 높 았다. 이는 대형과 포식형 동물플랑크톤이 소형 동물플랑크톤을 먹이로 하기 때문이라 생각된다.

2002년부터 2005년까지 남해도 남안에서 실측된 클로로필 a의 농도는 계절변동과 강한 경년변동을 보였다. 하지만 NEMURO 모 델로 추정한 식물플랑크톤의 생체량은 계절변동은 뚜렷하지만, 경 년변동은 매우 약했다(Fig. 5). 이들 사이의 상관관계는 상관계수 가 0.591(P<0.05)로, 유의한 관계를 보였다. 월평균 클로로필 a 농 도는 5월이 낮고 8월이 높았고, 추정한 식물플랑크톤의 월평균 생 체량은 역시 5월이 낮고 8월이 높았다. 모델을 통해 추정된 식물 플랑크톤의 생체량과 실측된 클로로필 a 농도는 계절변동 형태 유 사하였다(Fig. 6). Eppley et al.(1985)은 클로로필 a 농도가 일차 생산의 제곱에 비례하는 관계에 있으며, Shim and Yoon(1989)은 식물플랑크톤 탄소량과 클로로필 a 농도와 높은 상관관계를 나타 내었다고 보고하였다. 그러므로 클로로필 a 농도를 기준으로 NEMURO 모델을 이용하여 추정된 식물플랑크톤 생체량을 검증 한 것은 이 둘 사이의 관계는 단위의 차이가 있지만, 실측한 클로 로필 a 농도를 사용하여 계산한 식물플랑크톤의 생체량과 모델을 통한 식물플랑크톤 추정값 사이는 큰 차이가 나타나지 않을 것으

Location	Eastern Bering Sea	Central Pacific	Sut	parctic Pacific	Baltic Sea	East Sea
l					70 (Spring) 105 (Summer/Autumn)	687.506 (pre-CRS) 724.172 (post-CRS)
	60	194.36		129.575		
				42.34		
						5.546
				48.91	214.29	
					82.5	
copepods	6					
Mysiids	6					
Euphausiids	5.5			2.555		
Pteropods				2.555		
Amphipods	3.5			2.555		
Sergestid shrimp)			2.555		
Chaetognaths				2.555		
Oth. Lg. Zoop.				2.555		
Salps				9		
Ctenophores				4		
Jellyfish	0.88			3		
Reference	Trites et al. (1999)	Cox et al. (2002)	Aydin e	et al. (2003, 2005)	Harvy et al. (2003)	Zhang and Yoon (2003)
tinued						
n	80.7 (mod 52.2 (mod	tel 1) 23 tel 2)	9.0	243.572	231	
						182.8
						197.2
		4	.5		32	
	8.4			8.4		111.5
	3.0 (mod	el 1)		5.1.47		100.0
	3.04 (mod	lel 2)		5.147		108.8
copepods						
						27.4
Mysiids						
Euphausiids		4 (Kril 1 (Kril	l larva) l adult)	5.000		
Pteropods Amphipods Sergestid shr Chaetognath Oth. Lg. Zoo Salps	imp s p.					
Ctenophores						
Jellyfish				3.433	5.011	
Referen	nce Bundy (2	(2004) Erfan an (20	d Pitcher 05)	Cheung and Pitche (2005)	er Pauly and Christens Cheung <i>et al.</i> (2	en (1993) 2002) This study
	Location Location Location Location Mysiids Euphausiids Pteropods Amphipods Sergestid shrimp Chaetognaths Oth. Lg. Zoop. Salps Ctenophores Jellyfish Reference tinued n copepods Mysiids Euphausiids Pteropods Amphipods Sergestid shr Chaetognath: Oth. Lg. Zoor Salps Ctenophores Jellyfish Euphausiids Pteropods Amphipods Sergestid shr Chaetognath: Oth. Lg. Zoor Salps Ctenophores Jellyfish Reference	LocationEastern Bering Sea60copepods6Mysiids6Euphausiids5.5PteropodsAmphipods3.5Sergestid shrimpChaetognathsOth. Lg. Zoop.SalpsCtenophoresJellyfish0.88ReferenceTrites et al. (1999)tinuedn80.7 (mod 52.2 (mod)n8.43.0 (mod 3.04 (mod)solutionsPteropodsMysiidsEuphausiidsPteropodsAmphipodsSergestid shrimpChaetognathsOth. Lg. Zoop.SalpsCtenophoresJellyfishReferenceBundy (2	LocationEastern Bering SeaCentral Pacific60194.3660194.36copepods6Mysiids6Euphausiids5.5PteropodsAmphipods3.5Sergestid shrimpChaetognathsOth. Lg. Zoop.SalpsCtenophoresJellyfish0.88ReferenceTrites et al. (1999)Cox et al. (2002)tinuedn\$0.7 (model 1) 52.2 (model 2)23MysiidsEuphausiidsSergestid shrimp CopepodsMysiidsEuphausiidsFeropodsMysiidsSergestid shrimp ChaetognathsOth. Lg. Zoop.SalpsCtenophoresJellyfishOth. Lg. Zoop.SalpsCtenophoresJellyfishKeferenceBundy (2004)Erfan an (2005)	LocationEastern Bering SeaCentral PacificSut60194.36copepods6Mysiids6Euphausiids5.5PteropodsAmphipods3.5Sergestid shrimpChaetognathsOth. Lg. Zoop.SalpsCtenophoresJellyfish0.88ReferenceTrites et al. (1999)Cox et al. (2002)Aydin et al.tinuedn80.7 (model 1) 52.2 (model 2)239.0copepodsMysiidsEuphausiids4.5 1 (Krill larva) 1 (Krill adult)PteropodsAmphipodsSergestid shrimp ChaetognathsOth. Lg. Zoop. SalpsCtenophores JellyfishEuphausiidsFuenodationAmphipodsSergestid shrimp ChaetognathsOth. Lg. Zoop. SalpsCtenophores JellyfishReferenceBundy (2004)Erfan and Pitcher (2005)	LocationEastern Bering SeaCentral PacificSubarctic Pacific60194.36129.57542.3448.91copepods648.91copepods5.52.555Pteropods2.555Amphipods3.52.555Sergestid shrimp2.555Chaetognaths2.555Oth, Lg, Zoop.2.555Salps9Ctenophores4Jellyfish0.8880.7 (model 1) 52.2 (model 2)239.0243.572tinueda80.7 (model 1) 3.04 (model 2)5.147copepods4.58.43.0 (model 1) 3.04 (model 2)5.147copepodsAmphipodsSergestid shrimpChaetognaths01 (Krill larva) 1 (Krill adult)5.000PteropodsAmphipods Sergestid shrimpChaetognaths0th, Lg, Zoop, SalpsCtenophores4.58.43.04 (model 2)5.000PteropodsAmphipods Sergestid shrimpChaetognaths0th, Lg, Zoop, SalpsCtenophoresJellyfish5.433CtenophoresJellyfish6Bundy (2004)Erfan and PitcherCheeng and PitcherCheeng and PitcherCtenophoresJellyfishCtenophoresJellyfishCtenophores </td <td>LocationEastern Bering SeaCentral PacificSubarctic PacificBaltic Sea70 (Spring)70 (Spr</td>	LocationEastern Bering SeaCentral PacificSubarctic PacificBaltic Sea70 (Spring)70 (Spr

Table 5. Comparison of $\ensuremath{P\!/\!B}$ ratios of phytoplankton and zooplankton

로 생각된다. 이 둘 사이의 상관관계는 상관계수가 0.991(P<0.01) 로, 관련성이 매우 높은 것으로 나타났다. 따라서 NEMURO 모델 로 추정한 생체량은 경년변동을 정확히 반영하지 못하여 생체량 의 변동을 예측하기는 어렵지만 평균적인 계절변동은 잘 반영하 여 특정 해의 생체량을 추정할 수 있을 것으로 생각된다. 그리고 NEMURO 모델로 추정한 P/\overline{B} 비는 각 영양단계 내에서 호흡, 성 장, 사망 등과 관련하여 유기물의 생태학적 전환 효율을 파악하기 위해 중요하다(Parsons *et al.*, 1984). 추정된 동·식물플랑크톤의 생체량과 P/\overline{B} 비는 Ecopath와 같은 중·상위 생태계 모델(Polovina, 1984; Christensen and Pauly, 1992)의 입력 자료로 활용이 가능할 것으로 보인다.

식물플랑크톤의 연간 총 생체량은 534.311 μg l-1고, 동물플랑크 토의 연간 총 생체량은 229.163 µg l⁻¹이었다. 식물플랑크톤은 생 산량과 생체량 둘 다 소형이 대형보다 크게 나타났으며, 동물플랑 크톤은 포식형, 대형, 소형의 순으로 크기가 작을수록 생체량이 낮 았으며, 생산량은 대형, 포식형, 소형의 순이었다. NEMURO 모델 에 의해 추정된 식물플랑크톤은 크기가 작을수록 생체량이 높았 고, 동물플랑크톤의 경우는 하위생태계의 먹이망 내에서 영양단계 가 높을수록 생체량이 높았다(Table 2, Table 3), 일반적인 먹이 구 조에서는 영양단계가 높을수록 낮은 생체량을 나타내지만, 동물플 랑크톤의 경우는 이러한 경향을 보이지 않았다. 하지만 동물플랑 크톤의 P/B 비를 살펴보면 소형, 대형, 포식형 순서로 나타났다 (Table 4). 이는 소형 식물플랑크톤을 이용하는 소형과 대형 동물 플랑크톤의 양 보다, 대형 식물플랑크톤을 이용하는 대형과 포식 형 동물플랑크톤 많기 때문이다. 그리고 소대형 동물플랑크톤은 포식형 동물플랑크톤보다 생체량이 적고, P/B 비는 높게 나타났 다. 이것은 소·형과 대형 동물플랑크톤을 먹이로 하는 포식형 동 물플랑크톤을 섭이하는 상위 생물의 부재로 인하여, 소형과 대형 동물플랑크톤은 포식형 동물플랑크톤에 비하여 상대적으로 포식 압이 높은 것으로 해석할 수 있다. 그리고 포식형 동물플랑크톤을 섭이하는 상위 포식자의 부재로 인하여 하위 동물플랑크톤에 비 하여 높은 생체량을 가지는 것으로 생각된다.

P/B 비는 연간 총 생산량에 연 평균 생체량을 나눈 것으로, P/ B 비가 높은 소형 동물플랑크톤은 대형 및 포식형 플랑크톤에 비 하여 세대가 전환하는 기간이 짧아 상대적으로 생산력이 높다는 것을 의미한다. 이 값을 이용하여 상대적인 해역의 생산력을 비교 가 가능하며, 모델 내에서 추정된 P/B 비를 비교 검증 할 수 있 다. 최근의 연구에 많이 사용되는 중·상위생태계 모델의 주요입 력 자료인 P/B 비는 지역마다 다르게 추정되었다. 식물플랑크톤 의 P/B 비는 동해에서 값이 687.5~724.2로 가장 컸으며, 북대서 양의 동부 스코티안 대륙붕지역에 52.2로 가장 낮았다. 동물플랑 크톤은 크기나 종에 따른 P/B 비가 사용되었으며, 소형과 대형 동 물플랑크톤으로 나뉜 경우는 대형이 NEMURO 모델에서 구분하 는 포식형 동물플랑크톤을 포함하였다. 소형 동물플랑크톤의 P/B 비가 가장 큰 지역은 발틱해로 214.3이었으며, 가장 작은 값을 가 지는 지역은 동부 스코티안 대륙붕 지역과 포클랜드로 8.4였다. 대 형 동물플랑크톤은 가장 큰 값을 나타낸 지역은 116.6으로 이 논 문에 적용된 동중국해 북부였으며, 가장 낮은 값을 보인 지역은 동부 스코티안 대륙붕 지역으로 3.0이었다. 포식형 동물플랑크톤의 P/B 비는 Aydin et al.(2003, 2005)의 논문에서 가장 자세하게 적 용되었으며, 이들 값을 모두 더한 전체 P/B 비는 31.3으로 NEMURO 모델에서 계산된 값과 유사하였다(Table 5).

한국 남해의 동물플랑크톤에 관한 이전 연구는 현존량을 7.01 ton/km², 평균 생산량은 약 86~172 ton/km²/yr으로 보고되었다(김, 1976). 이를 이용해 P/B 비를 계산한 결과는 12.243~24.486이었다. 이 값은 모델을 이용해 추정한 값보다 적었다. Pauly and Christensen (1993)과 Cheung *et al.*(2002)이 추정한 동중국해 동물플랑크톤의 P/B 비는 동물플랑크톤이 32이고 해파리류가 5.011이었다. 김 (1976)의 논문을 이용해 계산한 P/B 비보다는 크지만, 본 연구에 서 추정된 값보다는 적었다. Stead *et al.*(2005)은 하천에 서식하

는 동물플랑크톤과 저서생물의 P/B 비를 분류군별로 나타내었는 데, 그 중 해양에서도 서식하는 요각류의 P/B 비는 최소 87.5에 서 최대 262.5의 범위에 있다고 보고하였다. 이와 같이 P/B 비는 분류군마다 다르며, 서식환경에 따라 값이 다르게 나타났다.

본 연구의 대상 해역인 동중국해 북부는 지형적으로 외양수의 영향을 직접 받는 해역으로서, 대만난류수, 중국 대륙연안수, 한국 남해연안수와 같이 특성이 서로 다른 수괴들이 접하는 해역이다 (Yang and Kim, 1990; 박 등, 1998). 이 해역의 해수특성은 특정 해류의 세력 확대와 해저지형, 육수유입, 기상현상 등 여러 요인 에 의한 계절 변화가 크다(나 등, 1990, 강과 전, 1999). 이러한 해 양 환경의 변화는 수온, 염분 및 영양염의 변동과 플랑크톤의 분 포에 직접적인 영향을 미치게 된다(임 등, 2003). 하지만 연구에 적용된 NEMURO 모델은 환경의 변동에 영향을 받아 영양염과 동·식물플랑크톤의 변화에 초점을 둔 것이 아니라, 환경이 줄 수 있는 영향을 많은 부분 배제하고 하위생태계를 이루는 각 비생물 및 생물의 요소에 초점을 두었다. NEMURO 모델은 일 년을 주 기로 일일단위로 각각의 요소들이 동일한 결과를 나타내므로, 급 격한 해양 변동이 없는 기간을 선정하여 모델을 수행하여야 한다. 본 연구의 결과인 2002부터 2005년까지 4년간은 해양의 급격한 변 동이 없는 동일한 regime이라는 것을 가정하고, 모델의 의해 추정 된 결과는 이 시기에 한정적으로 사용될 수 있다. 그리고 일일단 위로 추정되는 모델의 결과를 검정하는 방법은 일일단위의 비교 가 아니라, 월평균한 값을 사용하여 검정하였으므로 반올림 오차 (rounding error)가 있을 수 있다. 이러한 부분은 본 연구의 한계점 으로 작용할 수 있으나, 플랑크톤의 계절 변화와 생체량 및 생산 량의 추정이 가능하여 본 연구의 목적인 중 ·상위생태계 모델의 입 력자료로서는 손색이 없을 것으로 생각된다.

사 사

이 연구는 해양수산부 산샤댐 건설에 따른 동중국해 생태계 및 수산생물자원의 변화를 예측하기 위한 "생태계 모델 개발"연구의 일환으로 수행되었으며, 한국해양학위원회 (KOC)의 지원을 받아 제 15차 북태평양과학위원회의 연례총회에서 발표되었습니다. 본 연구를 위하여 많은 조언과 가르침을 주신 NOAA NMFS의 Bernard A. Megrey 박사님께 깊은 감사의 말씀을 드립니다.

참고문헌

- 강영실, 전경암, 1999. 한국 남해 연안전선 생물화학적 특성 및 영양학적 구조. 한국수산학회지. 32: 22-29.
- 김동선, 조규대, 1998. 수영만의 생태계모델링에 의한 물질분포. 한국환경과학회지 7(6): 817-825.
- 김용술, 1972. 한국 남해의 동물성 플랑크톤량의 경년 변화에 관 한 연구. 한국수산학회지. 5(4): 108-114.
- 김용술, 1976. 한국 남해의 동물성 플랑크톤 생산량 추정. 한국수 산학회지. 9(4): 245-249.
- 나정렬, 한상규, 조규대, 1990. 한반도 근해의 해류와 해수특성 남해연안수 확장과 수온변화. 한국수산학회지. 23: 267-279.
- 박철, 이창래, 김정창, 1998. 동해전선역 동물플랑크톤 군집: 2. 수온 분포와의 관계. 한국수산학회지. **31**: 749-759.

- 서호영, 최상덕, 2004. 진해만에 출현하는 동물플랑크톤의 종조성 과 계절별 출현양상. 한국환경생물학회지. 22(1): 43-56.
- 송재윤, 2002. 2000~2001 전남 광양만에서 후생동물 플랑크톤의 생태 및 진주담치유생의 섭식. 여수대 석사학위 논문.
- 이원재, 박남주, 노재훈, 이재도, 장풍국, 장만, 신경순, 2004. 광 양만에서 식물플랑크톤의 시공간적 변화. 경남대학교 환경문제 연구소 환경연구. 27: 105-127.
- 임월애, 강창근, 김숙양, 이삼근, 김학균, 정익교, 2003. 여름철 남 해도 연안 식물플랑크톤 군집 구조의 단기 변화. 한국조류학회 지. 18(1): 49-58.
- Aita, N.M., Y. Yamanaka, and M.J. Kishi, 2003. Effects of ontogenetic vertical migration of zooplankton on annual primary production using NEMURO embedded in a general circulation model. *Fisheries Oceanography* **12**: 284–290.
- Aydin, K.Y., G.A. McFarlane, J.R. King, B.A. Megrey, 2003. The BASS/MODEL Report on trophic models of the subarctic Pacific basin ecosystems. North Pacific Marine Science Organization (PICES) Report no.25, 93pp.
- Aydin, K.Y., G.A. McFarlane, J.R. King, B.A. Megrey, K.W. Myers, 2005. Linking oceanic food webs to coastal production and growth rates of Pacific salmon (*Oncorhynchus* spp.), using models on three scales. *Deep-Sea Research II* 52: 757–780.
- Bundy, A., 2004. Mass balance models of the eastern Scotian Shelf before and after the cod collapse and other ecosystem changes. Canadian Technical Report of Fisheries and Aquatic Sciences No.2520. pp.193.
- Cheung, W., R. Watson and T. Pitcher, 2002. Policy Simulation of Fisheries in the Hong Kong Marine Ecosystem. *Fisheries Centre Research Reports* 10(2): 46–53.
- Cheung, W.L. and T.J. Pitcher, 2005. A Mass-Balance Model of the Falkland Islands Fisheries and Ecosystems. *Fisheries Centre Research Reports* **13**(7): 65–84.
- Christensen, V. and D. Pauly, 1992. ECOPATH II a software for balancing steady ecosystem models and calculating network characteristics. *Ecol. Model.* 61: 169–185.
- Cox, S.P., T.E. Essington, J.F. Kitchell, S.J.D. Martell, C.J. Walters, C. Boggs, and I. Kaplan, 2002. Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952-1988. II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. *Can. J. Fish. Aquat. Sci.* **59**: 1736–1747.
- Eppley, R.W., E. Stewart, M.R. Abbott and U. Heyman, 1985. Estimating ocean primary production from satellite chlorophyll. Introduction to regional differences and statistics for the Southern California Bight. J. Plankton Res. 7: 57–70.
- Eslinger, D.L., M.B. Kashiwai, M.J. Kishi, B.A. Megrey, D.M. Ware and F.E. Werner, 2002. Model task team workshop report, Final report of the International workshop to develop a prototype lower trophic level ecosystem model for comparison of different marine ecosystems in the North Pacific. 77pp.
- Erfan, A. and T.J. Pitcher, 2005. An Ecosystem Simulation Model of the Antarctic Peninsula. *Fisheries Centre Research Reports* 13(7): 5–20.
- Franks, P.J.S., 2002. NPZ Models of Plankton Dynamics: Their Construction, Coupling to Physics, and Application. J. Oceanogr. 58: 379–387.

- Fujii, M., Nojiri, Y., Yamanaka, Y., Kishi, M.J., 2002. A one-dimensional ecosystem model applied to time-series Station KNOT. *Deep-Sea Research II* 49: 5441–5461.
- Harvy, C.J., S.P. Cox, T.E. Essington, S. Hansson, and F. Kitchell, 2003. An ecosystem model of food web and fisheries interactions in the Baltic Sea. *ICES Journal of Marine Science*, **60**: 939–950.
- Hashioka, T. and Y. Yamanaka, 2007. Seasonal and regional variations of phytoplankton groups by top-down and bottom-up controls obtained by a 3D ecosystem model. *Ecological Modelling*. 202: 68–80.
- Ito, S.I., M.J. Kishi, Y. Kurita, Y. Oozeki, Y. Yamanaka, B.A. Megrey and F.E. Werner, 2004. Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. *Fish. Oceanogr.* 13(Suppl. 1): 111–124.
- Ito, S., B.A. Megrey, M.J. Kishi, D. Mukai, Y. Kurita, Y. Ueno, and Y. Yamanaka, 2007. On the interannual variability of the growth of Pacific saury (*Cololabis saira*): a simple 3-box model using NEMURO.FISH. *Ecological Modelling*. **202**: 174–183.
- Kishi, M.J., H. Motono, M. Kashiwai and A. Tsuda, 2001. An ecological-physical coupled model with ontogenetic vertical migration of zooplankton in the northweatern Pacific. *J. Oceanogr.* 57: 499–507.
- Kishi, M.J., T., Okunishi, Y., Yamanaka, 2004. A comparison of simulated particle fluxes using NEMURO and other ecosystem models in the western North Pacific. *Journal of Oceanography* 60: 63–73.
- Kishi, M.j., M. Kashiwai, D.M. Ware, B.A. Megrey, D.L. Eslimger, F.E. Werner, M. Noguchi, A.T. Azumaya, M. Fujii, S. Hashimoto, D. Huang, H. Iizum, Y. Ishida, S. Kang, G.A. Kantakov, H. Kim, K. Komatsu, V.V. Navrosky, S.L. Smith, K. Tadokoro, A. Tsuda, O. Yamamura, Y. Yamanaka, K. Yokouchi, N. Yoshie, J. Zhang, Y.I. Zuenko, and V.I. Zvalinsky, 2007. NEMURO - A lower trophic level model for the North Pacific marine ecosystem. *Ecological Modelling*. 202: 12–25.
- Lee, W.J., N.J. Park, J.H. Noh, J.D. Lee, P.G. Jang, M. Chang, and K.S. Shin, 2004. Temporal and Spatial distribution of phytoplankton in Gwangyang Bay. Environmental Research Institute, *Kyungnam Univ.* 27: 105–127.
- Lim, W.A., C.K. Kang, S.Y. Kim, S.G. Lee, H.G. Kim, and I.K. Chung, 2003. Short-term Changes of Community Structure of Phytoplankton in Summer Around Namhea Island of Korea. *Algae.* 18(1): 49–58.
- Megrey, B.A., K.A. Rose, R. Klumb, D. Hay, F.E. Werner, D.L. Eslinger, and S.L. Smith, 2007. A bioenergetics-based population dynamics model of Pacific herring (*Clupea harengus pallasi*) coupled to a lower trophic level nutrient-phytoplankton-zooplankton model: Description, calibration, and sensitivity analysis. *Ecological Modelling*. **202**: 144–164.
- NFRDI, National Fisheries Research and Development Institute. 2003-2006a. Annual Report of Korean Coastal Environment Monitoring, http://www.nfrdi.re.kr/home/tech/environment/enviro_01.php.
- NFRDI, National Fisheries Research and Development Institute. 2003-2006b. Annual report of oceanographic observations.
- Parsons, T.R., M. Takahashi, and B. Hargrave, 1984. Biological Oceanographic Processes-3rd ed., Pergamon press, 330pp.

- Pauly, D., and V. Christensen, 1993. Large Marine Ecosystems: Stress, Mitigation, and Sustainability - Stratified models of large marine ecosystems: a general approach and an application to the South China Sea. *Blackwell Science*. 148–174.
- Polovina, J.J., 1984. Model of a coral reef ecosystem. Part I. The ECOPATH application and its application to French Shoals. *Coral Reefs*, **3**: 1–11.
- Rose, K.A., B.A. Megrey, F.E. Werner, and D.M. Ware, 2007. Calibration of the NEMURO Nutrient-Phytoplankton-Zooplankton Food Web Model to a Coastal Ecosystem : Evaluation of an automated calibration approach. *Ecological modelling*. 202: 38–51.
- Shim, J.H. and K.S. Yoon, 1989. Biomass of primary producer in the Chnsu Bay: Relationships between phytoplankton carbon, cell number and chlorophyll. The Journal of the Oceanological Society of Korea. 24(4): 194–205.
- Soh, H.Y. and H.L. Suh, 1993. Seasonal fluctuation of the abundance of the planktonic copepods in Kwangyang Bay. *Korean J. Environ. Biol.* **11**(1): 26–34.
- Stead, T.K., J.M. Schmid-Araya, and A.G. Hildrew, 2005. Secondary production of a stream metazoan community: Does the meiofauna make a difference? *Limnol. Oceanogr.*, 50(1): 398–403.

Trites, A.W., P.A. Livingston, M.C. Vasconcellos, S. Mackinson,

A.M. Springer, and D. Pauly, 1997. Ecosystem change and the decline of marine mammals in the Eastern Bering Sea: testing the ecosystem shift and commercial whaling hypotheses. Fisheries Centre Research Reports 7. pp.100.

- Yamanaka, Y., N. Yoshie, M. Fuijii, M. Aita-Noguchi, and M.J. Kishi, 2004. An ecosystem model coupled with nitrogen-silicon-carbon cycles applied to station A7 in the northwest Pacific. *Journal of Oceanography* **60**: 227–241.
- Yang, H.S. and S.S. Kim, 1990. A study on sea water and ocean current in the sea adjacent to Korea peninsula. *Bull. Korean Fish. Soc.*, 23: 417–424.
- Yoshie, N., Y. Yamanaka, M.J. Kishi, H. Saito, 2003. One dimensional ecosystem model simulation of the effects of vertical dilution by the winter mixing on the spring diatom bloom. *Journal of Oceanography* **59**: 563–571.
- Zhang, C.I. and S.C. Yoon, 2003. Effects of Climatic Regime Shift on the Structure of Marine Ecosystem in the Southweatern East Sea during the 1970s. J. Kor. Fish. Soc., 36(4): 389–401.
- 2008년 1월 15일 원고접수
- 2008년 1월 14일 수정본 채택
- 담당편집위원: 김웅서