Emerging Technologies of Elastomers

엘라스토머의 새로운 도약

  • Jeong, Kwang-Un (Department of Polymer-Nano Science & Technology, Chonbuk National University) ;
  • Jin, Kwang-Yong (Department of Polymer-Nano Science & Technology, Chonbuk National University) ;
  • Nah, Chang-Woon (Department of Polymer-Nano Science & Technology, Chonbuk National University) ;
  • Lee, Myong-Hoon (Department of Polymer-Nano Science & Technology, Chonbuk National University)
  • 정광운 (전북대학교 고분자-나노공학과) ;
  • 진광용 (전북대학교 고분자-나노공학과) ;
  • 나창운 (전북대학교 고분자-나노공학과) ;
  • 이명훈 (전북대학교 고분자-나노공학과)
  • Published : 2008.06.30

Abstract

Up to now, most of researches and practical applications of polymeric elastomers have been focused on rubber, a type of elastomeric materials. Therefore, it has been widely accepted that rubber industry is tire industry. In this review, we would like to illuminate new emerging technologies of elastomers. Among many examples, there are actuators which can transform their mechanical shapes with respect to the surrounding environments. Paper folding (so called "origami" in Japanese) technology can be another good example. Utilizing paper folding technology, three-dimensional (3D) architectures containing multi-functions can be constructed from programmed 2D structures. Elastomer microlens can also be fabricated using lithography technologies combined with chemical reactions.

종래의 고무는 대부분 수송 수단인 타이어의 재료로 사용되어 왔으며, 타이어 산업이 곧 고무 산업이라는 인식이 깊다. 본 고에서는 고무를 포함하는 고분자 엘라스토머의 새로운 응용 분야를 조명하고자 한다. 외부의 자극에 반응하는 엘라스토머의 탄성력을 이용하는 액추에이터(actuator), 종이접기의 기술을 이용하여 프로그램된 엘라스토머 이차원 구조를 삼차원으로 변환 시키는 오리가미(origami), 그리고 리소그라피 기술을 이용하여 제조된 엘라스토머 마이크로 렌즈 등의 최신 연구 분야에서의 고분자 엘라스토머의 활용을 알아보고자 한다.

Keywords

References

  1. M. T. Payne and C. P. Rader, "Elastomer Technology Handbook", ed. by N. P. Cheremisinoff, chap. 14, p.557, CRC Press, Tokyo, 1993
  2. J. E. Mark, B. Erman, and F. R. Eirich, "Science and Technology of Rubber", 2nd Ed., Academic Press, New York, 1994
  3. A. N. Gent and M. Shen, "Science and Technology of Rubber", ed. By F. R. Eirich, Academic Press, New York, 1978
  4. W. P. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, "Encyclopedia of Polymer Science and Engineering", Vol. 5, John Wiley & Sons, Inc, USA, 1985
  5. R. B. Seymour, Polym. News, 17, 176 (1992)
  6. V. L. Colvin, "From opals to optics. Colloidal photonic crystals", MRS Bull., 26, 637 (2001) https://doi.org/10.1557/mrs2001.159
  7. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D Micro- and Nanostructures via Interference Lithography", Adv. Funct. Mater., 17, 3027-3041 (2007) https://doi.org/10.1002/adfm.200700140
  8. Y. Xia and G. M. Whitesides, "Replica molding with a polysiloxane mold provides this patterned microstructure", Angew. Chem. Int. Ed., 37, 550 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  9. T. Ikeda, J. Mamiya, and Y. Yu, "Photomechanics of Liquid-Crystalline Elastomers and Other Polymers", Angew. Chem. Int. Ed., 46, 506 (2007) https://doi.org/10.1002/anie.200602372
  10. E. P. Chan and A. J. Crosby, "Fabricating Microlens Arrays by Surface Wrinkling", Adv. Mater., 18, 3238-3242 (2006) https://doi.org/10.1002/adma.200601595
  11. R. F. Stevens and N. Davies, "Lens arrays and photography", The Journal of Photographic Science, 39, 199-208 (1991) https://doi.org/10.1080/00223638.1991.11737149
  12. N. F. Borrelli, "Microoptics technology: fabrication and applications of lens arrays and devices", Marcel Dekker, New York, 1999
  13. K. Uchino, "Electrostrictive actuators: materials and applications", Am. Ceram. Doc. Bull., 65, 643-652 (1986)
  14. T. Huang, H. Xu, K. Jiao, L. Zhu, H. R. Brown, and H. Wang, "A Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel", Adv. Mater., 19, 1622-1626 (2007) https://doi.org/10.1002/adma.200602533
  15. J. Guan, H. He, D. J. Hansford, and L. J. Lee, "Self-Folding of Three-Dimensional Hydrogel Mic rostructures", J. Phys. Chem. B, 109, 23134 (2005) https://doi.org/10.1021/jp054341g
  16. M.-H. Li and P. Keller, "Artificial muscles based on liquid crystal elastomers", Phil. Trans. R. Soc. A, 364, 2763 (2006) https://doi.org/10.1098/rsta.2006.1853
  17. http://filologanoga.blogspot.com/2007/01/vizualizacija.html
  18. http://www.repubblica.it/2004/j/sezioni/scienza_e_tecnologia/robotmedico/robotmedico/robotmedico.html
  19. http://www.jpl.nasa.gov/news/features-print.cfm?feature=492
  20. http://www.memx.com/products.htm
  21. Y. Yu and T. Ikeda, "Soft Actuators Based on Liquid-Crystalline Elastomers", Angew. Chem. Int. Ed., 45, 5416-5418 (2006) https://doi.org/10.1002/anie.200601760
  22. Tilman Buchner, Dr. Dissertation, MIT (2003)
  23. S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural colour in the morpho butterfly : cooperation of regularity and irregularity in an iridescent scale", Proc. R. Soc. Lond. B, 269, 1417-1421 (2002)
  24. M. Boncheva, S. A. Andreev, L. Mahadevan, A. Winkleman, D. R. Reichman, M. G. Prentiss, S. Whitesides, and G. M. Whitesides, "Magnetic selfassembly of three-dimensional surfaces from planar sheets", PNAS, 102, 3924-2929 (2005)
  25. C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, "Capillary Origami : Spontaneous Wrapping of a Droplet with an Elastic Sheet", Physical Review Letters, 98, 156103 (2007) https://doi.org/10.1103/PhysRevLett.98.156103
  26. L. Mahadevan and S. Rica, "Self-Organized Origami", Science, 307, 1740 (2005) https://doi.org/10.1126/science.1105169
  27. G. T. Pickett, "Self-folding origami membranes", EPL, 78, 48003 (2007) https://doi.org/10.1209/0295-5075/78/48003