Geometrically Linear and Non-linear Analysis of Plates and Shells Resting on Arbitrary Elastic Edge Supports

임의의 탄성 경계 지점으로 지지된 판과 쉘의 기하학적 선형 및 비선형해석

  • 이원홍 (진주산업대학교 토목공학과) ;
  • 한성천 (대원과학대학 토목과) ;
  • 박원태 (공주대학교 토목공학과)
  • Published : 2008.06.30

Abstract

A linear and non-linear analysis for plates and shells with arbitrary edge supports subjected to various loading was presented. The 9-node ANS(Assumed Natural Strain) hell element was employed and the spring element, which could express an arbitrary edge support using the six degrees of freedom, was introduced. For the application of his analysis, the plates and shells with various edge supports were analyzed, and the ending behavior with these edge supports were obtained accurately. For these edge supports, particularly elastic edge support was simulated by six springs and reasonable results were obtained. The results show that the present method can be widely used to analyze the bending behavior of plates and shells with arbitrary edge conditions.

여러 가지 하중을 받는 임의의 탄성 경계 지지된 판과 쉘의 기하학적 선형 및 비선형해석을 수행하였다. 가정변형률 9절점 쉘 요소를 이용하였으며, 임의의 탄성 경계 지지를 표현하기 위해 6개의 자유도를 갖는 스프링 요소가 사용되었다. 탄성 경계지지 구조물 해석의 응용을 위하여, 여러 형태의 단부 지지를 받는 판과 쉘이 분석되었으며, 이들 단부 지지에 대한 휨 거동을 정확히 얻을 수 있었다. 6개의 스프링으로 표현된 탄성 경계 지지 조건에 대하여 적절한 결과를 얻을 수 있었다. 해석 결과로부터 본 연구의 해석 방법이 임의의 탄성 경계 조건을 갖는 판과 쉘의 거동을 해석하는데 폭넓게 사용될 수 있음을 알 수 있었다.

Keywords

References

  1. 한성천, 최삼열 (2004) 변형률 보간 9절점 쉘 요소를 이용한 적 층복합판 과 쉘의 선형 정적 해석 및 자유진동 해석, 한국전산구조공학회논문집, 제17권, 제4호, pp. 279-293
  2. Ahmad, S., Irons, B. M. and Zienkiewicz, O. C. (1970) Analysis of Thick and Thin Shell Structures by Curved Finite Elements. Int J Num Meth Eng., Vol. 2, pp. 419-451 https://doi.org/10.1002/nme.1620020310
  3. Andelfinger, U. and Ramm, E. (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Num Meth Eng., Vol. 36, pp. 1311-1337 https://doi.org/10.1002/nme.1620360805
  4. Bathe, K. J. and Dvorkin, E. N. (1986) A formulation of general shell elements-the use of mixed interpolation of tensorial components. Int J Num Meth Eng., Vol. 22, pp. 697-722 https://doi.org/10.1002/nme.1620220312
  5. Crisfield, M. A. (1981) A fast incremental/iterative solution procedure that handles snap-through. Comput Struct. Vol. 13, pp. 55-62 https://doi.org/10.1016/0045-7949(81)90108-5
  6. Gorman, D. J. (2000) Free vibration and buckling of in-plane loaded plates with rotational elastic edge support. J Sound Vib., Vol. 229(4), pp. 755-773 https://doi.org/10.1006/jsvi.1999.2527
  7. Groesberg, S. W. (1963) Advanced Mechanics, Wiley, New York
  8. Han, S. C., Choi, S. and Park, W. T. (2007) The Effect of Varying the In-plane Loads and Stacking Sequence on the Vibration Analysis of Composite Stiffened Plates, Sci Eng Compos Mater., Vol. 14(4), pp. 271-298
  9. Han, S. C., Kim, K. D. and Kanok-Nukulchai, W. (2004) An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells. Struct Eng Mech., Vol. 18(6), pp. 807-829 https://doi.org/10.12989/sem.2004.18.6.807
  10. Horrigmoe, G. and Bergan, P. G. (1978) Nonlinear analysis of free form shells by flat finite elements. Comp Meth Appl Mech Eng. Vol. 16, pp. 11-35 https://doi.org/10.1016/0045-7825(78)90030-0
  11. Huang, H. C. and Hinton, E. (1986) A new nine node degenerated shell element with enhanced membrane and shear interpolation. Int J Num Meth Eng., Vol. 22, pp. 73-92 https://doi.org/10.1002/nme.1620220107
  12. Huang, M. H. and Thambiratnam, D. P. (2001) Analysis of plate resting on elastic supports and elastic foundation by finite strip method. Comput Struct., Vol. 79, pp. 2547-2557 https://doi.org/10.1016/S0045-7949(01)00134-1
  13. Kanok-Nukulchai, W. (1979) A simple and efficient finite element for general shell analysis. Int J Num Meth Eng., Vol. 14, pp. 179-200 https://doi.org/10.1002/nme.1620140204
  14. Kebari, H. and Cassel, A. C. (1992) A Stabilized 9-node Non-linear Shell Element. Int J Num Meth Eng., Vol. 35, pp. 37-61 https://doi.org/10.1002/nme.1620350104
  15. Kim, K. D., Lee, C. S. and Han, S. C. (2007) A 4-node Co-rotational ANS Shell Element for Laminated Composite Structures, Compos Struct., Vol. 80(2), pp. 234-252, https://doi.org/10.1016/j.compstruct.2006.05.003
  16. MacNeal, R. H. and Harder, R. L. (1985) A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, Vol. 1, pp. 3-20 https://doi.org/10.1016/0168-874X(85)90003-4
  17. Ma, H. and Kanok-Nukulchai, W. (1989) On the application of assumed strained methods, Structural Engineering and Construction, Achievements, Trends and Challenges. Kanok-Nukulchai et al. (eds.), AIT; Bankok
  18. Ni, Q. Q., Xie, J. and Iwamoto, M. (2005) Buckling analysis of laminated composite plates with arbitrary edge supports. Compos Struct., Vol. 69, pp. 209-217 https://doi.org/10.1016/j.compstruct.2004.06.012
  19. Ramm, E. (1981) Strategies for Tracing the Nonlinear Response Near Limit, Formulations and Computational Algorithms in Finite Element Analysis. Bathe KJ, Oden JT, Wunderlich W (eds), Springer-Verlag: Berlin
  20. Rhiu, J. J. and Lee, S. W. (1988) A nine-node finite element for analysis of geometrically non-linear shells. Int J Num Meth Eng. Vol. 24, pp. 581-604
  21. Sabir, A. B. and Lock, A. C. (1973) The application of finite elements to the large deflection geometrically non-linear behaviour of cylindrical shells, Variational Methods in Engineering. Brebia CA, Tottenham H (eds), Southampton Univ. Press, Vol. 7, pp. 66-75
  22. Simo, J. C., Fox, D. D. and Rifai, M. S. (1989) On stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comp Meth Appl Mech Eng., Vol. 73, pp. 53-92 https://doi.org/10.1016/0045-7825(89)90098-4
  23. STRAND 7 (2005) Using STRAND7 manual, Available from
  24. Timoshenko, S. P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, McGraw-Hill
  25. Yoo, S. W. and Choi, C. K. (2000) Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element, Struct Eng Mech., Vol. 9(1), pp. 99-110 https://doi.org/10.12989/sem.2000.9.1.099
  26. Zienkiewicz, O. C. and Taylor, R. L. (1989) The Finite Element Method, McGraw-Hill, London
  27. Zienkiewicz, O. C. and Taylor, R. L. (2000) The Finite Element Method, Butterworth-Heinemann, London