DOI QR코드

DOI QR Code

Analysis of Essential Proteins in Protein-Protein Interaction Networks

단백질 상호작용 네트워크에서 필수 단백질의 견고성 분석

  • Published : 2008.06.28

Abstract

Protein interaction network contains a small number of highly connected protein, denoted hub and many destitutely connected proteins. Recently, several studies described that a hub protein is more likely to be essential than a non-hub protein. This phenomenon called as a centrality-lethality rule. This nile is widely credited to exhibit the importance of hub proteins in the complex network and the significance of network architecture as well. To confirm whether the rule is accurate, we Investigated all protein interaction DBs of yeast in the public sites such as Uetz, Ito, MIPS, DIP, SGB, and BioGRID. Interestingly, the protein network shows that the rule is correct in lower scale DBs (e.g., Uetz, Ito, and DIP) but is not correct in higher scale DBs (e.g., SGD and BioGRID). We are now analyzing the features of networks obtained from the SGD and BioGRD and comparing those of network from the DIP.

단백질 상호작용 네트워크는 허브(hub)라 할 수 있는 상호작용 수가 많은 소수의 단백질과 상호작용수가 적은 다수의 단백질들로 구성된다. 최근 들어 여러 연구들에서 허브 단백질이 비 허브(non-hub) 단백질보다 상호작용 네트워크에 필수적인 단백질일 가능성이 높다고 보고되고 있다. 이러한 현상을 중심-치명 룰(centrality-lethality rule)이라 하는데, 이는 복잡계 네트워크에서 허브단백질의 중요성 및 네트워크 구조의 중요성을 설명하기 위한 방법으로 폭넓게 신뢰받고 있다. 이에 본 논문에서는 중심-치명 룰이 항상 옳게 적용되는지를 확인하기 위해 Uetz, Ito, MIPS, DIP, SGD, BioGRID와 같은 효모에 관한 공개된 모든 단백질 상호작용 데이터베이스들을 분석하였다. 흥미롭게도, 상호작용 데이터가 적은 데이터베이스들(Uetz, Ito, DIP)에서는 중심-치명 룰을 잘 나타냈지만 상호작용 데이터가 대용량인 데이터 베이스들(SGD, BioGRID)에서는 중심-치명 룰이 잘 맞지 않음을 확인하였다. 이에 따라 SGD와 BioGRID 데이터베이스로 부터 얻은 상호작용 네트워크의 특징을 분석하고 DIP 데이터베이스의 상호작용 네트워크와 비교하였다.

Keywords

References

  1. E. Ravasz and A. L. Barabasi, "Hierarchical organization in complex networks," Phys. Rev. E, Vol.67, No.2, pp.026122-0261228, 2003. https://doi.org/10.1103/PhysRevE.67.026122
  2. A. L. Barabasi and Z. N. Oltvai, "Network biology: understanding the cell's functional organization," Nat. Rev. Genet., Vol.5, No.2, pp.101-113, 2004. https://doi.org/10.1038/nrg1272
  3. N. N. Batada, L. D. Hurst, and M. Tyers. "Evolutionary and physiologucal important of hub proteins," Plos Comput. Biol., Vol.2, No.7, pp.e88, 2006. https://doi.org/10.1371/journal.pcbi.0020088
  4. H. Jeong, S. P. Mason, A. L. Barabasi , and Z. N. Oltvai. "Lethality and centrality in protein networks," Nature, Vol.411, No.6833, pp.41-42, 2001. https://doi.org/10.1038/35075138
  5. S. R. Proulx, S. Nuzhdin, and D. E. Promislow. "Direct selection on genetic robustness revealed in the yeast transcriptome," PLos ONE., Vol.2, No.9, pp.e911, 2007. https://doi.org/10.1371/journal.pone.0000911
  6. H. Yu, D. Greenbaum, H. X. Lu, X. Zhu, and M. Gerstein, "Genomic analysis of essentiality within protein networks," TRENDS in Genomics, Vol.20, No.6, pp.227-231, 2004. https://doi.org/10.1016/j.tig.2004.04.008
  7. P. Ross-Macdonald, P. S. Coelho, T. Roemer, G. S. Roeder, and M. Snyder, "Large-scale analysis of the yeast genome by transposon tagging and gene disruption," Nature, Vol.402, No.6759, pp.413-418, 1999. https://doi.org/10.1038/46558
  8. E. A. Winzeler, D. D. Shoemaker, A. Astromoff, H. Liang, M. Johnston, and R. W. Davis, "Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis," Science, Vol.285, No.5429, pp.901-906, 1999. https://doi.org/10.1126/science.285.5429.901
  9. X. He and J. Zhang. "Why Do Hubs Tend to Be Essential in Protein Networks?" Plos Genet, Vo.2, No.6, pp.0826-0834, 2006.
  10. R. Aragues, A. Sali, J. Bonet, M. A. Marti-Renom, and B. Oliva, "Characterization of protein hubs by inferring interacting motifs from protein interactions," PLoS Comput Biol., Vol.3, No.9, pp.1761-1771, 2007.
  11. P. Uetz, L. Giot, G. Caqney, T. A. Mansfield, R. S. Judson, S. Fields, and J. M. Rothberg, "A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae," Nature, Vol.403, No.6770, pp.623-627, 2000. https://doi.org/10.1038/35001009
  12. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, "A comprehensive two-hybrid analysis to explore the yeast protein interactome," PNAS, Vol.98, No8. pp.4569-4574, 2001. https://doi.org/10.1073/pnas.061034498
  13. U. Gűldener, M. Műnsterkotter, M. Oesterheld, P. Paqel, A. Ruepp, H. W. Mewes, and V. Stűmpflen, "MPact: the MIPS protein interaction resorce on yeast," Nucleic Acids Research, Vol.34, No.1, pp.D436-D441, 2006. https://doi.org/10.1093/nar/gkj003
  14. L. Salwinski, C. S. Miller, A. J. Smith, F.K. Pettit, J. U. Bowie, and D. Eisenberg, "The Database of interacting proteins: 2004 update," Nucleic Acids Res, Vol.32, No.1, pp.D449-D451, 2004. https://doi.org/10.1093/nar/gkh086
  15. J. E. Hirschman, R. Balakrishnan, K. R. Christie, D. Botstein, and J. M. Cherry, "Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome," Nucleic Acids Res, Vol.34, No.1, pp.D442-445, 2006. https://doi.org/10.1093/nar/gkj117
  16. C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers, "BioGRID: a general repository for interaction datasets," Nucleic Acids Res., pp.34, No.1, pp.D535-D539, 2006. https://doi.org/10.1093/nar/gkj109
  17. J. W. Ryu, H. Y. Kim, T. H. Kang, J. S. Yoo, and J. S. Chung, "Prediction of unannotated proteins from a protein interaction network filtered by using localization and domains in yeast," J. Kor. Phys. Soc, Vol.51, No.5, pp.1805-1811, 2007. https://doi.org/10.3938/jkps.51.1805