Simulation of Ratcheting in Wheel-Rail Contact

차륜-레일 구름접촉에 의한 라체팅 모델링

  • 구병춘 (한국철도기술연구원, 철도구조연구팀)
  • Published : 2008.06.30

Abstract

Ratcheting is a cyclic accumulation of strain under a cyclic loading. It is a kind of mechanisms which generate cracks in rail steels. Though some experimental and numerical study has been performed, modeling of ratcheting is still a challenging problem. In this study, an elastic-plastic constitutive equation with non-linear kinematic hardening equation was applied. Contact stresses in wheel-rail were analyzed. Under the tangential stress of the contact stresses, a cyclic stress-strain relation was obtained by using the model. A constant ratcheting strain per cycle was accumulated.

일정한 크기의 응력이 반복적으로 작용할 때 매 사이클마다 변형이 증가하는 현상을 라체팅이라고 한다. 라체팅은 레일이나 차륜의 균열발생 기구의 하나이지만 실험적, 이론적 측면에서 아직 많은 연구를 필요로 하는 분야이다. 레일의 경우 접선력 방향으로 소성변형이 축적되는 것으로 알려져 있다. 본 연구에서는 차륜-레일의 구름 접촉에서 발생하는 응력의 이론해에 대해 살펴보고, 라체팅을 모델링 할 수 있는 비선형 이동 경화법칙을 사용하는 탄소성 구성방정식을 적용하여 라체팅 현상을 모델링 하였다. 일정 크기의 접촉력이 반복적으로 작용할 때 매 사이클마다 일정 크기의 소성변형이 발생하였다.

Keywords

References

  1. A. Bohmer, M. Ertz, and K. Knothe (2003), "Shakedown limit of rail surfaces including material hardening and thermal stresses," Fatigue Frac Engng Mater Struc 26, pp. 985-998 https://doi.org/10.1046/j.1460-2695.2003.00690.x
  2. M. Ertz and K. Knothe (2002), "A comparison of analytical and numerical methods for the calculation of temperatures in wheel/ rail contact," Wear 253, pp. 498-508 https://doi.org/10.1016/S0043-1648(02)00120-5
  3. F. D. Fischer, W. Daves, and E. A. Werner (2003), "On the temperature in the wheel-rail rolling contact," Fatigue Frac Engng Mater Struc 26, pp. 999-1006 https://doi.org/10.1046/j.1460-2695.2003.00700.x
  4. J. W. Ringsberg (2000), "Cyclic ratchetting and failure of a pearlitic rail steel," Fatigue Frac Engng Mater Struc 23, pp. 747-758 https://doi.org/10.1046/j.1460-2695.2000.00336.x
  5. L. Taleb, M. Cousin, and J. F. Jullien (1998), "Metallic structures subjected to cyclic loadings - I. Inadequency of the elastic analysis for the steady state assessment," Int. J. of Pressure Vessels and Piping 75, pp. 173-180 https://doi.org/10.1016/S0308-0161(97)00115-4
  6. 이형연, 김종범, 이재한 (2002), "316L 스테인리스강 원통 구조물의 열라체팅 변형 시험 및 해석," 대한기계학회논문집 A권, 제 26권, 제 3호, pp. 479-486
  7. J. W. Ringsberg, H. Bjarnehed, A. Johansson, and B. L. Josefson (2000), "Rolling contact fatigue of rails-finite element modelling of residual stresses, strains and crack initiation," Proc Instn Mech Engrs Vol. 214 Part F, pp. 7-19 https://doi.org/10.1243/0954409001531207
  8. J. W. Ringsberg, F. J. Franklin, B. L. Josefson, A. Kapoor, and J. C. O. Nielsen (2005), "Fatigue evaluation of surface coated railway using shakedown theory, finite element calculations, and lab and field trials," Int. J. of Fatigue, Vol. 27, pp. 680-694 https://doi.org/10.1016/j.ijfatigue.2004.11.002
  9. F. J. Franklin, T. Chung, and A. Kapoor (2003) "Ratcheting and fatigue-led wear in rail-wheel contact," Fatigue Fract and Mater Struct, pp. 949-955
  10. I. M. Widiyarta, F. J. Franklin, and A. Kapoor (2006), "Modelling thermal effects in ratcheting-led wear and rolling contact fatigue," 7th Int. Conference on Contact Mechanics and Wear of Rail/ Wheel Systems, Brisbane, Australia, September 24-26, pp. 279- 286
  11. A. Kapoor, J. H. Beynon, D. I. Fletcher, and M. Loo-Morrey (2004), "Computer simulation of strain accumulation and hardening for pearlitic rail steel undergoing repeated contact," J. Strain Analysis, Vol. 39, No.4, pp. 383-396 https://doi.org/10.1243/0309324041223935
  12. J. L. Chaboche (2008), "A review of some plasticity and viscoplasticity constitutive theory," Int. J. Plasticity, doi:10.1016/j.ijplas. 2008.03.009
  13. K. L. Johnson (1985), "Contact Mechanics," pp. 204-205, Cambridge University Press
  14. J. Lemaitre and J. L. Chaboche (1996), "Mécanique des matériaux solides," pp. 219-229, Dunod 2nd Edition