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Empirical Choice of the Shape Parameter for
Robust Support Vector Machines

Ro Jin PakV

Abstract

Inspired by using a robust loss function in the support vector machine regression
to control training error and the idea of robust template matching with M-estimator,
Chen (2004) applies M-estimator techniques to gaussian radial basis functions and
form a new class of robust kernels for the support vector machines. We are specially
interested in the shape of the Huber’s M-estimator in this context and propose a way
to find the shape parameter of the Huber’s M-estimating function. For simplicity,
only the two-class classification problem is considered.
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1. Introduction

Combining robust estimation with support vector machine(SVM) turns out very ef-
fective in improving the performance of SVM, severely affected by gross error (Scholkopf
and Smola, 2002; Mangasarian and Musicant, 2000). The Huber’s M-estimating func-
tion as objective function or cost function is most often used. Although the idea of a
robust M-estimator baged loss function has been applied in support vector regression to
control training error, the resultant effect on margin maximizing is obscure (Schélkopf
and Smola, 2002). By contrast, by applying robust M-estimator to kernels, both margin
and training errors are explicitly forced to be robust (Chen, 2004).

Recent works concerning robustness of SVM witnessed the usefulness of M-estimating
functions, specially the Huber’s function, however, the main concern of these works was
not on the shape of the Huber’s function. In this article we are concerned about the
shaping parameter of the Huber’s function. It is reported that the numbers for the
shaping parameter, suggested by Huber (1981}, are quite useful in robust SVM (Schélkopf
and Smola, 2002). However, these numbers are based on the assumption that data are
from the normal probability distribution and that assumption is not often guaranteed
in practice. The numbers are often determined by a trial and error through computer
simulations.

We are interested in finding a proper(empirical) value of the shaping parameter for
a given data set. In this article, we propose a method to find a proper value, defined as
the value maximizing expected accuracy for a two-class classification.

The remainder of this article is organized as follows. In Section 2, the {approximate)
expected accuracy in a two-class classification is derived in terms of a shaping parameter.
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The method and an example of finding an empirical value of a shaping parameter are
present in Section 3.

2. Expected Accuracy

A model H, with a k-dimensional parameter vector w, consists of its functional form f,
the distribution P(D|w, H) that the model makes about the data D and a prior parameter
distribution p(w|\, H) with a regularization parameter A. The first level of inference infers
the posterior distribution of W for a given value of A by using the Bayes’ rule:

p(w|D, A, H) < p(w| A, Hip(D|w, H).
Consider the following probability model:

e The prior over w is the Gaussian prior
A 2
pw |\ H) cexp (=5 ([ w2 ).

e The probability distribution p(y; | x;, w, H) for y; = £1 is given by

exp ([l — giail+)
exp (—[1 — a;]+) +exp (=[1 + ai])
~ exp(~[l - yiai]+)
= exp(-&), (2.1)

where a; = a(x;,w) and [u]y = ul,so. For details about the above results, refer
Kwok (2000).

p(yi|xi7W,H) =

Let Q={(x1,11), (X2,%2);- -, Xn,¥n) | x; € R%, y; € {-1,1},1=1,2,...,n} be aset
of n input-output training data pairs, where R? space is referred to as the input vectors
onto some feature space by a non-linear function ¢ and then finds a linear separating
hyperplane in the feature space H, that is, wx + b = 0 where w € H and b € R. SVM
classifiers are obtained by solving the object function

min M +C i € (2.2)
W,b,ei 2 )

i=1
subject to

vi(Wo(x)+b>1—¢, € >0 forall i=1,...,n,

where the constant C' > 0 determines the tradeoff between margin maximization and
training error minimization.

After solving the above optimization by using Lagrangian techniques, we can obtain
the classification rule SVM

s5gn (Z aiyiK(xvxi) + b) )
i=1



Empirical Choice of the Shape Parameter for Robust Support Vector Machines 545

where K(x,x') = ¢(x)Tp(x;) and o;s are Lagrange multipliers. The commonly used
Mercer’s kernels include Gaussian radial based function(RBF),

202

K(x,x) = exp (JE;’”E) (23

where ¢ € R is a kernel parameter. Let a d-dimensional pattern (object) x have n
coordinates, x = (1, g, ...,24), where 7; € R for i = 1,2,...,d. Note that {|x — x'[|?

is typically defined as
d
lIx = x'||* = (Z |z — wi§2>
i=1

and is called as the sum of square differences(SSD) in the signal processing society.
Similar to the definition of SSD and the idea in (Chen, 2004), we can define the sum of
robust differences(SRD) between z and @’ as follows:

d
SRDPV’Y()Q x’i) = Zp(lxl - xilaW)v (24)

where p(,) is a robust error measure{or a robust loss function) and 7 is a parameter

controlling the shape of p(,). For example, for p in {2.4) we may use the Huber M-
estimating function

2
i—, if z <,
P(Z, '7) = 2 ~y
Y <Z - E) . otherwise.

If we replace p in (2.4) by the p of Huber M-estimating function, we can get a Huber M-
estimator based SRD as a similarity measure. By adding SRD to Gaussian RBF kernels
{i.e., by combining (2.3) and (2.4)), a M-estimator based robust Gaussian RBF kernels
{Chen, 2004) is defined as

K(x,x;) = exp { SRD (X, X:) } (2.5)

o2

In order to utilize the Chen’s proposal we need proper values for v and o, respectively.
Chen (2004) did a full search in some regions specified in advance to get the values, but
of course it is time consuming and there is no guarantee that we are searching on right
regions. In this article, we propose to choose values for the parameters in the sense of
optimizing certain criterion. We consider the two-class classification problem and let
expected accuracy as a criterion.

Denote y?°* and y?™ are the posterior class label and the prior class label, respectively.
Let N = {i| yf-’”l’ = —1 with probability p} and n(_; 1), n(1,1) be the numbers of cases
correctly classified, respectively and n be the total number of observations then the
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expected frequency

E[n-1-y+nay] =E|D I = -1, 9" = -1+ I =1,y = 1)]

:ZP[yfos:‘l ypm__ j|+P|:pos__1yp1'L=1:|

[ =t =] e [ = 1 =1) 0

The approximate posterior probabilities can be expressed by using (2.1) as the func-
tion of 7y as

P[yP* = —1] ypm =-1] o« exp(—[1+a; (7)]+)
- { exp(-1—a; (7)), ifa (v)>-1,

1, otherwise
and
Pl =1|y7" =1] o« exp(~[1—af(V)]4)

_ [ ew(-1+af(v), ifaf(y)<l,
1, otherwise,

where a; (v) = — Y ;cp @Ky (%, %x;) + b and af (7) = 3, ye @ K4 (X, %;) + b. Then the
expected accuracy,

—1,-1) *+
E w] o pZexp — 1—2(1] (xi,%;)+b
i

n
JEN +

+(1—p)2exp —|1- Z a; Ky (xi,%x;) — b ,

jENC©

+
which is maximized when
1-—- Za] (x5,%5) +b and |1-— Z a; Ky(x;,%x5) — b
JEN n JENE i
are as small as possible for each <.
3. Proper Choice of the Shape Parameter
We propose that the proper v should be the value which makes both
1- Z a; Ky (xi,%5) +b and |1-— Z a; Ky (x5,%5) — b (3.1)
JEN + jEN*© +

to be 0 as close as possible in order for (2.6) to be maximized.
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Example 3.1 The Exclusive-OR Problem
The exclusive-or problem is as follows: Find an optimal separating hyperplane that
classifies the following data set without error (i.e. C = oo and ¢; = 0 in (2) for all ¢):

Index i X y
1 1, 1 1
2 (1,-1) | -1
3 (—1,-1) | 1
4 (-1, 1) | -1
Here, N = {2,4} and N° = {1,3}. Suppose the kernel is the Gaussian RBF, then we

have eight equations from (3.1) but only two distinct equations are relevant among them;

1~ (1.3375) [exp {~p(1(0,0), )} + exp {~p(|(2,2)[, M},

and
1 —(1.3375) [exp {—p(1(0, =2)|, )} + exp {—p(I(=2,0), )}

According to the ranges of ~, we have

' - (vE-3)
v <2: 1-(1.3375) | exp(0) + exp — and (3.2)
L
i Y
YRS PN e Gk o)
. 2 exp — . .
- -
Q<< \/ . 7 (\/ B 5)
v < V8: 1—{1.3375) | exp(0) + exp = and (3.4)
1 — (1.3375) | 2exp (-—25)] . (3.5)
o
) [ 4
¥ >/8: 1—(1.3375) | exp (0) + exp (——&EN and (3.6)
- A ‘
1 - (1.3375) | 2exp (‘;‘5)] . (3.7)

The expressions in (3.2}, (3.4) and (3.6) are always negative and the expression in
(3.3), {3.5) and (3.7) is negative on the dark area and positive on the bright area of
Figure 3.1. The expected accuracy is maximized at every combination of (o,7) on the
dark areas. We have three areas to consider,

o {{0,7) € R?|0 < 0 <1.4255, 0 < v <2, 1—(1.3375)[2 exp {—v(2 — v/2)/o%}] < 0}
[Figure 3.1(a)].

e {(0,7) € R?|1.4255 < ¢ < 2.0162, 2 < v < /8} [Figure 3.1(b)].
e {(0,7) € R%|¢ > 2.0162, v > v/8} [Figure 3.1(c)].
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Figure 3.1: Contour plots for the expression in (3.3), (3.5) and (3.7), respectively, from
(a) to (c) over v and o. The expressions are negative on dark area and positive on bright
area

From the robust statistical point of view, we better choose the shape parameter v as
large as possible as long as robustness is maintained (Huber, 1981). In practice, suppose
an estimate & for ¢ in (2.5) is available, and

e if 0 < & < 1.4255, our choice of the v should be the corresponding value of the
on the border line of the contour plot [Figure 3.1(a)],

e if 1.4255 < & < 2.0162, our choice of the v would be /8 [Figure 3.1(b)],

e if & > 2.0162 , our choice of the v would be oo [Figure 3.1(c)].

4. Conclusions

In this article, we propose the method of finding a shaping parameter of the Huber’s
function for the RBF kernels in a two-class classification problem. The shaping parameter
~ is very much related with a scale parameter o and choice of v is under control of a
scale parameter. In this sense, it requires a more through study on estimating a scale
parameter in the sequel. Though the scope of this article is too narrow to be little difficult
to generalize the discoveries, we raise the possibility that the Guassian RBF itself is quite
enough to handle robustness regardless of M-estimating functions.
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