DOI QR코드

DOI QR Code

Frequency Domain Characteristics of the Metamaterial Slab Using 2D-FDTD

2D-FDTD 방법을 이용한 메타물질 Slab의 주파수 영역 특성

  • 홍익표 (공주대학교 정보통신공학부)
  • Published : 2008.07.30

Abstract

In this paper, the scattering parameters of the metamaterial slab are obtained using the 2D FDTD(Finite-Difference Time-Domain) method. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity. But it is very difficult to obtain frequency response of metamaterial itself because frequency dispersive model such as Lorentz, Drude model are used in FDTD. We used the well-known m-n-m cycle sine pulse to obtain the frequency response of the metamaterials. Comparisons between the wideband Gaussian input pulse and band-limited m-n-m cycle sine pulse are performed in this paper also. From the results, we concluded that the scattering parameters in frequency domain can be obtained using specific input pulse in FDTD even if the response has valid only for limited bandwidth.

본 논문에서는 2차원 시간영역 유한차분법(2D-FDTD)을 이용하여 메타물질(Metamaterial) Slab의 주파수 영역 특성을 구하는 방법을 연구하였다. 일반적으로 메타물질의 해석 방법에는 FDTD가 가장 광범위하게 사용되고 있는데 주파수 분산특성을 갖는 유전율과 투자율 모델을 가정하기 때문에, 정확한 주파수 응답특성을 구하기가 힘들다는 단점이 있다. 본 논문에서는 2차원 구조치 메타물질 Slab에 이미 광대역 특성을 갖는 가우시안 펄스와 제한된 대역폭 특성을 갖는 m-n-m 주기를 갖는 Sine 입력펄스를 각각 인가하여 주파수특성으로서 산란계수를 구하는 방법을 제안하고 비교하여 제한된 대역폭에 대한 주파수 특성 결과를 제시하였다. 본 논문에서 제안한 방법을 사용하면 메타물질을 이용한 다양한 회로구조에 대하여 제한된 대역폭에 대한 주파수 특성을 얻을 수 있다.

Keywords

References

  1. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities", Soviet Physics Uspekbi, vol. 10, no. 4, pp. 5-13, Jan-Feb., 1968
  2. J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Physical Review Letters, vol. 76, No. 25, pp. 4773-4776, Jun., 1996 https://doi.org/10.1103/PhysRevLett.76.4773
  3. J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, "Magnetism from conductors and enhanced linear media," IEEE Trans. Microwave Theory Tech., vol. 47, no. 11. pp. 2075-2084, Nov. 1999 https://doi.org/10.1109/22.798002
  4. R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verifications of a negative index of refraction," Science, vol. 292, pp. 77-79, 6 April. 2001 https://doi.org/10.1126/science.1058847
  5. N. Engheta and R. W. Ziolkowski, Metamaterials : Physics and Engineering Explorations, IEEE, 2006
  6. C. Caloz and T. Itoh, Electromagnetic Metamaterials, John Wiley & Sons, 2006
  7. A. Taflove and S. C. Hagness, Computational Electrodynamics : the Finite-Difference Time-Domain Method, Boston, 3rd Ed., Artech House, 2005
  8. M. W. Feise, J. B. Schneider, and P. J. Bevelacqua, "Finite-difference and pseudospectral time-domain methods applied to backward- wave metamaterials," IEEE Trans. Antennas Propagat., vol. 52, pp. 2955- 2962, Nov. 2004 https://doi.org/10.1109/TAP.2004.835274
  9. Y. Zhao, P. Belov and Y. Hao, "Improvement of Numerical Accuracy in FDTD Modelling of Left-Handed Metamaterials," 2006 IET Seminar on Metamaterials for Microwave and Millimeterwave Applications, pp.153-157, Sept. 2006
  10. S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, pp. 1630- 1639, 1996 https://doi.org/10.1109/8.546249
  11. A. A. Sukhorukov, I. V. Shadrivov, and Y. S. Kivshar, "Wave scattering by metamaterial wedges and interfaces," Int. J. Numer. Model. Vol. 19, pp. 105-117. Mar. 2006. https://doi.org/10.1002/jnm.602
  12. Y. Hao, L. Lu, and C. G. Parini, "Time-domain modeling on wave propagation through single/ multilayer left-handed meta-materials slabs," ICAP 2003, vol.2, pp.610-613, Apr. 2003
  13. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 114, pp.185-200, 1994 https://doi.org/10.1006/jcph.1994.1159
  14. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 64, pp.056 625/1- 056 625/15, Nov. 2001