<학술논문>

DOI:10.3795/KSME-B.2008.32.10.784

디지털 입자 홀로그래피의 입자 초점면 결정에 관한 실험적 검증

양 얀^{*}·강 보 선^{*} (2008년 7월 4일 접수, 2008년 9월 13일 수정, 2008년 9월 17일 심사완료)

Validation Experiments for the Determination of Particle Focal Positions in Digital Particle Holography

Yan Yang and Bo-seon Kang

Key Words: Digital Particle Holography(디지털 입자 홀로그래피), Focal Plane(초점면), Correlation Coefficient Method(상관계수법)

Abstract

The feasibility and the accuracy of the correlation coefficient(CC) method for the determination of particle positions along the optical axis in digital particle holography were verified by validation experiments. A traverse system with capable of high precision was used to move the particle objects by exact known distances between several different positions. The particle positions along the optical axis were calculated by the CC method and compared with their exact values to obtain the errors of the focal plane determination. The tested particles were 2D dots in a calibration target along with different sized glass beads and droplets that reflected and caused a three-dimensional effect. The results show that the CC method can work well for both the 2D dots and the 3D particles. The effect of other particles on the focal plane determination was also investigated. The CC method can locate the focal plane of particles with a high precision, regardless of the existence of other particles.

1. 서 론

물체를 3차원적으로 기록, 재생할 수 있는 홀 로그래피는 측정 체적의 정보를 기록한 이후에, 다양한 방법으로 재생함으로써 홀로그램에 저장 된 많은 양의 정보를 추출할 수 있다. 기존 광학 적 홀로그래피(optical holography)를 급속하게 대 체하고 있는 디지털 홀로그래피(digital holography)는 홀로그램의 화학적 처리가 필요하 지 않고, 요구되는 광학적 시스템이 단순하며, 실시간 분석이 가능하다는 여러 가지 장점으로 인하여, 여러 분야에서 광범위하게 적용되고 있 다.⁽¹⁾

디지털 입자 홀로그래피(Digital Particle Holography)는 CCD 카메라와 컴퓨터의 급격한 발 전과 함께, 홀로그램의 질도 개선되고, 이미지 재 생을 위한 계산 속도도 빨라지면서, 입자의 크기, 모양, 3차원 속도, 공간 분포와 같은 입자 특성을 계측할 수 있는 적절한 광계측시스템으로 주목받 고 있다. 하지만, 홀로그래피에서 재생된 입자 이 미지는 일반적인 카메라 이미지와는 다르게 대개 초점 심도(depth of focus)가 매우 크기 때문에, 초 점면을 어떻게 결정하느냐가 입자 홀로그래피 해 석에 있어서 중요한 문제 중의 하나이다. 초점면 을 결정하기 위한 다양한 방법이 제안되고 있는 데, Yu와 Cai⁽²⁾는 기울기를 기반으로 한 기준을

^{*} 책임저자, 회원, 전남대학교 기계시스템공학부 E-mail : bskang@chonnam.ac.kr TEL : (062)530-1683 FAX : (062)530-1689
* 전남대학교 기계공학과

제안하였고, 통합 강도 크기(integrated amplitude modulus)를 사용한 방법이 Dubois 등⁽³⁾에 의해 소 개되었다. Lefebvre 등⁽⁴⁾은 Wavelet 변환의 최대값 이 초점면에서 나타남을 보여주었고, Zhang 등⁽⁵⁾ 은 Gabor 변환을 사용하여 초점면 위치를 결정하 였다.

본 연구 그룹에서는 광학적 홀로그래피에서 입 자의 초점면을 결정하기 위한 상관계수법을 처음 제안하였다(Choo와 Kang⁽⁶⁾). 또한, 디지털 홀로그 래피에서도 2차원 평면에 존재하는 점들을 대상 으로 적용하여, 디지털 입자 홀로그래피에서도 상관계수법을 적용할 수 있음을 보였다.⁽⁷⁾ 하지만 실제 입자들은 2차원 평면상의 점이 아닌 3차원 적이며, 계측 영역상에 존재하는 수많은 입자 상 호간의 영향도 무시할 수 없다.

따라서, 본 연구에서는 입자를 정확히 이동시 킬 수 있는 이송시스템을 사용하여 입자의 정확 한 위치를 파악하고, 상관계수법을 적용하여 계 산된 입자의 위치와 비교함으로써, 상관계수법의 초점면 결정의 정확성을 검증할 수 있는 실험을 수행하였다. 대상 입자는 이전 연구에서 사용한 2차원 평면상의 점뿐만 아니라, 3차원적인 유리 구(glass beads)와 액적(droplets)을 사용하였으며, 초점면 결정에 있어서 다른 입자들의 영향도 조 사하였다.

2. 기본 원리

2.1 In-line 디지털 홀로그래피의 원리

광학적 홀로그래피와 마찬가지로 디지털 홀로 그래피도 홀로그램을 기록한 후 재생하는 두 단 계를 거치지만, 기록 매체로 필름 대신에 CCD 카메라를 사용하고, 기록된 홀로그램을 컴퓨터를 이용하여 수치적으로 재생한다. 디지털 홀로그래 피의 광학적 시스템 구성은 동축(in-line) 방식이 나 비축(off-axis) 방식으로 구별되며, in-line 방식 이 구성의 단순함 때문에 광범위하게 사용되고 있다.

In-line 디지털 홀로그래피의 광학적 구성을 Fig. 1에 나타내었으며, 홀로그램의 기록 및 재생 과 관련된 좌표들을 Fig. 2에 나타내었다. 확장된 레이저 빔이 기록 대상이 되는 물체 영역을 통과 하면서, 물체에 의해 회절되어 카메라 센서에 도 달된 레이저 빔이 물체파(object beam), *O*(ξ,η)가

Beam expander

Fig. 2 Coordinate system

되고, 물체에 의한 굴절이 없이 도달한 빔은 기 준파(reference beam)가 된다. 두 빔이 카메라 센 서에서 중첩되면서 간섭이 발생하게 되고, 카메 라 센서에 기록된 간섭 패턴이 홀로그램, h(x,y)가 된다. 이 홀로그램을 기록 당시 사용한 기준 광, $E_R(x,y)$ 으로 다시 비추게 되면 재생면에 재생 이미지, $R(\xi,\eta')$ 가 나타나게 되며, 이 회절은 Fresnel-Kirchhoff 적분으로 나타낼 수 있다.⁽⁸⁾

$$R(\xi',\eta') = \frac{i}{\lambda} \int_{-\infty}^{\infty} h(x,y) E_{R}(x,y) \frac{\exp(-i\frac{2\pi}{\lambda}\rho)}{\rho} dxdy \qquad (1)$$

여기서 λ는 레이저 빔의 파장, ρ는 인접한 두 면 에서 대응하는 두 점 사이의 거리로 다음과 같이 표현되며

$$\rho = \sqrt{(\xi' - x)^2 + (\eta' - y)^2 + d^2}$$
(2)

d는 인접한 두 평면 사이의 거리이다.

재생 이미지 $R(\xi,\eta')$ 은 Fresnel 근사 방법이나 Convolution 방법으로 구할 수 있으며, 수학적 표 현은 Fresnel 근사 방법은 식 (4), Convolution 방 법은 식 (5)로 표현된다.⁽⁸⁾

$$R(\xi',\eta') = \frac{i}{\lambda d} \exp(-i\frac{2\pi}{\lambda}d) \exp[-i\frac{\pi}{\lambda d}(\xi'^2 + \eta'^2)]$$

$$\cdot F^{-1}\{h(x,y)\exp[-i\frac{\pi}{\lambda d}(x^2 + y^2)]\}$$
(4)

$$R(\xi',\eta') = F^{-1}\{F[h(x,y)]$$

$$\cdot F[\frac{i}{\lambda} \frac{\exp[-i\frac{2\pi}{\lambda}\sqrt{(d^2 + (x - \xi')^2 + (y - \eta')^2}]}{\sqrt{(d^2 + (x - \xi')^2 + (y - \eta')^2}}]\}$$
(5)

여기서 F는 퓨리에 변환, F⁻¹은 역퓨리에 변환이 다.

두 재생 방법 중에서 Convolution 방법에 의해 재생된 이미지의 해상도가 Fresnel 방법에 의해 재생된 이미지의 해상도보다 더 우수하기 때문에 본 연구에서는 Convolution 재생 방법을 선택하였 다⁽⁹⁾.

2.2 상관계수법(Correlation Coefficient Method)

두 영상 F와 G에 대해 정의되는 상관계수는 식 (7)과 같이 정의되며, 두 영상간 유사성이 낮 으면 0에 가까운 값, 유사성이 아주 높으면 1에 가까운 값을 갖는다.

$$CC = \left[\frac{\sum_{m} \sum_{n} (F_{mn} - \overline{F})(G_{mn} - \overline{G})}{\sqrt{\left[\sum_{m} \sum_{n} (F_{mn} - \overline{F})^{2}\left[\sum_{m} \sum_{n} (G_{mn} - \overline{G})^{2}\right]}\right]}$$
(7)

여기서 *m*, *n*은 픽셀의 색인, *F*와 *G*는 각 영상의 평균 명암값을 나타낸다. Fig. 3은 상관계수를 이 용한 광축 방향 위치 결정의 개략도이다. 입자이 미지는 재생간격 Δ*z*로 층층이 재생되며, 광축상

Fig. 3 Correlation coefficient method

의 임의 위치에서의 입자의 상관계수는, 그 평 면의 앞뒤 일정 거리(상관간격: ΔC_z)만큼 떨어져 있는 두 위치에서의 입자 영상들 간의 상관계수 로 정의된다. 입자의 초점면에서는 상관간격만큼 떨어진 두 이미지가 최대한 유사해야 하기 때문 에 상관계수가 최대가 되어야 한다. 따라서, 입자 의 초점면은 상관계수 곡선의 최대점으로 결정된 다.

3. 검증 실험

상관계수법에 의한 입자 초점면 결정 방법을 검증하기 위한 실험 방법을 Fig. 4에 나타내었다. 입자의 홀로그램은 CCD 카메라(Kodak Megaplus ES4020, 2,048×2,048 pixels, $\Delta x = \Delta y = 7.4 \ \mu m$) 를 P1, P2, P3, · ·, 위치로 순서적으로 옮기면 서 각 위치에서 기록되었다. CCD 카메라는 최소 3축이송시스템(Physik 이송거리가 33 nm인 Instruments; PI)에 의해 움직이기 때문에 Δd_1 과 △d2는 충분한 정확도를 가지고 결정된다. 각 위 치에서의 초점면(d_{c1} , d_{c2} , d_{c3})은 상관계수법에 의 해서 계산된다. P1 위치의 초점면, d_{c1}을 정확한 입자의 거리, d라고 가정하면, P2 위치의 초점면, d_{c2} 는 $d_{c1} + \Delta d_1$ 와 비교할 수 있고, P3 위치의 초 점면, d_{c3} 는 $d_{c1} + \Delta d_1 + \Delta d_2$ 와 비교할 수 있다. 이러한 방법으로 상관계수법에 의한 입자 초점면 결정의 오차를 검증할 수 있다.

3.1 2차원 입자(점)

평면상 존재하는 입자로서 2차원 점들이 새겨 진 표적을 사용하였다. 이 표적을 고정시키고 CCD 카메라를 첫 위치인 P1에서부터 P2(6.6 mm),

Fig. 4 Validation experiments of the CC method for both 2D and 3D objects

786

P3(13.2 mm), P4(46.2 mm), P5(79.2 mm)로 이동하 면서 홀로그램을 기록하였으며, 각 위치에서 기 록된 홀로그램을 Fig. 5에 나타내었다. CCD 카메 라의 정확한 이송거리, 정확한 이송거리에 의한 입자의 위치, 상관계수법에 의해 구해진 입자의 초점면 위치와 오차를 Table 1에 나타내었다. 상 관계수법에 의해 계산된 P1 위치의 초점면은 입 자의 정확한 위치, *d*로 가정하였다. 상관계수법에 의한 2차원 입자의 초점면 결정에 있어서의 오차 는 입자 위치가 150~210 mm 사이인 경우 허용 범위 이내로 매우 작으며, 입자 거리에 비례해서 증가하고 있음을 알 수 있다. 이러한 결과는 이 전 실험 결과나 홀로그램의 수치모사 방법에 의 한 결과와도 일치하고 있다.⁽⁷⁾

3.2 3차원 액적

본 연구의 최종적인 측정 대상은 분무 중의 액 적이며, 상관계수법이 2차원 점들이 아닌 3차원 입자에 대해서도 적용될 수 있을지 여부를 검증 하기 위하여 3차원 입자로써 액적을 선택하였다. 액적 홀로그램을 기록하기 위한 실험장치를 Fig. 6이 보여주고 있으며, 액적은 직경이 100 μm인 주사 바늘 끝에 생성되며, 주사기의 미세한 조절

Table 1 Comparison of the object distances movedby the traverse with those calculated by theCC method for 2D dots(Unit : mm)

Positions	P1	P2	P3	P4	P5
Distance from P1 (Moved by traverse)	0	6.6	13.2	46.2	79.2
Distance from Object (Moved by traverse)	161.07	167.67	174.27	207.27	240.27
Distance from Object (Calculated by CC method)	161.07	167.675	174.275	207.285	240.3
Error (µm)		5	5	15	30

Fig. 5 Holograms of the 2D dots at different positions

에 의하여 서로 다른 크기의 액적을 생성할 수 있다. 2차원 경우와 같은 방법으로 이송장치를 이용하여 서로 다른 크기의 액적 홀로그램을 다 섯 위치에서 기록하였으며, 이렇게 기록된 홀로 그램을 Fig. 7에 나타내었다. 전형적인 상관계수 곡선의 예로써, 액적 직경, D_d = 436.6 μ m인 경 우, 각 위치에서의 상관계수 곡선을 Fig. 8에 나 타내었다. 이 상관계수 곡선들로부터 초점면 결 정을 위한 최고점을 쉽게 결정할 수 있음을 알 수 있다. 이 액적의 P1 위치에서 상관계수법에 의해 계산된 초점면에서의 재생이미지를 Fig. 9에 나타내었다.

Fig. 7 Holograms of different sized droplets at different positions

Fig. 8 CC curves of a droplet($D_d = 436.6 \ \mu m$) at different positions

Fig. 9 Droplet images at $P1(D_d = 436.6 \ \mu \text{ m}, \text{ reconstruction})$ distance = 160.8 mm); (a) hologram (b) reconstructed image (c) magnified image

Fig. 7의 모든 위치에서의 서로 다른 크기 액적 들의 초점면을 상관계수법으로 계산하였으며, 이 렇게 결정된 초점면과 정확한 이송거리에 의해 결정된 입자 위치와의 비교에 의한 오차를 Table 2에 나타내었다. 각 위치에서 첫 번째 열은 상관 계수법에 의해 계산된 입자의 초점면, 두 번째 열은 정확한 이송거리에 의한 입자의 위치이며, 이 두 값의 차이가 초점면 결정에 있어서의 오차라고 볼 수 있다.

Fig. 10은 액적의 위치와 크기에 따른 이 오차 들을 보여주고 있다. P2, P3, P4, P5, 각 위치에서 서로 다른 크기 입자의 상관계수법에 의한 초점 면 결정 오차의 평균 및 표준 편차는 각각 11± 6.519, 12±10.368, 19±8.944, 6±5.477 μm이다. 초 점면 결정에 있어서의 오차는 일반적으로 입자 크기에 비례하여 증가하지만, 허용할 수 있는

Fig. 10 Errors of the focal plane determination for different sized droplets at different positions

 Table 2. Comparison of the object distances moved by the traverse with those calculated by the CC method for different sized droplets(Unit : mm)

-										
Positions	Р	21		P2	l	P3	F	24		P5
Size(μ m)	CC	d_{c1}	CC	$d_{c1}\text{+}6.6$	CC	d_{c1} +13.2	CC	d_{c1} +46.2	CC	d_{c1} +79.2
111	160.79	160.79	167.395	167.39	173.990	173.99	207.000	206.990	239.99	239.99
$Error(\mu m)$				5		0		10		0
185	160.80	160.80	167.410	167.40	174.005	174.00	207.000	206.975	240.00	240.00
$Error(\mu m)$				10		5		25		0
303.4	160.81	160.81	167.395	167.41	174.020	174.01	206.980	207.010	240.00	240.01
$Error(\mu m)$				15		10		30		10
436.6	160.80	160.80	167.405	167.40	174.020	174.00	206.985	206.975	239.99	240.00
$Error(\mu m)$				5		20		10		10
451.4	160.81	160.80	167.420	167.40	174.025	174.00	206.980	207.000	240.01	240.00
$Error(\mu m)$				20		25		20		10

범위 안에 존재함을 알 수 있다. 또한, 전반적으 로 오차는 2차원 점들의 경우보다 더 적으며, 오 히려 홀로그램의 최적 입자 위치로 간주될 수 있 는 150~220 mm 범위를 넘어서 위치한 큰 입자들 의 경우에도 더 적은 오차를 보여주고 있다. 3차 원 입자의 경우 2차원 점보다 오차가 더 적은 이 유로써는 우선 3차원 입자의 홀로그램은 2차원 원형의 평면 점과 비교했을 때 입자의 3차원 경 계에서 산란, 굴절되는 더 많은 빔들로 인하여 홀로그램 자체에 더 많은 입자 정보가 기록될 수 있다고 볼 수 있기 때문이다.

이러한 결과들을 통해서 볼 때, 상관계수법은 3차원 입자의 초점면 결정에서 큰 크기와 먼 거 리에서도 매우 유용하기 때문에, 3차원 입자의 광축 방향 입자 위치를 결정하는데 있어서 매우 적합한 방법으로 사용될 수 있음을 알 수 있다.

3.3 다른 입자들의 영향

실제적인 입자 계측의 경우, 실험 체적은 매우 많은 수의 입자들이 존재하고, 입자들 사이의 거 리 또한 대개 아주 가까운 편이다. 따라서, 상관 계수법에 의한 입자의 초점면 결정에 있어서 주 변에 존재하는 다른 입자들의 영향을 검토해 보 아야 한다.

초점면 결정의 대상이 되는 입자의 주위에 존 재하는 다른 입자들의 영향을 광학적 이론을 배 경으로 하여 수학적인 방법으로 표현하는 것은 쉽지가 않다. 따라서, 본 연구에서는 Fig. 11에 나 타낸 것과 같이, 다른 입자들의 영향을 조사할 수 있는 간단한 실험장치를 사용하였다. 입자로 서는 직경이 150 ~ 450 µm인 유리구를 사용하였 고, 유리구는 짧은 기둥 끝에 부착되며, 짧은 기 둥을 기판(base)의 여러 위치 구멍에 끼움으로써 입자간 위치나 거리를 임의로 조정할 수 있다. 다른 입자들의 영향을 파악하기 위해 기록한 홀 로그램을 Fig. 12에 나타내었다. Fig. 12에서 홀로 그램 B는 홀로그램 A의 첫 번째 유리구의 왼쪽

(a) glass beads(b) baseFig. 11 Glass bead objects and base

뒤에 두 번째 유리구가 존재하고, 홀로그램 C는 첫 번째 유리구 주변에 더 많은 유리구가 존재하 면서 첫 번째 유리구와 중첩되는 경우까지 포함 되도록 하였다. 세 개의 홀로그램에 대하여, 첫 번째 유리구의 초점면을 Fig. 12에 표시한 해석 영역(Region of Interest; ROI)에서 상관계수법을 적용하여 계산하였다.

세 홀로그램의 첫 번째 유리구에 대한 상관계 수 곡선을 Fig. 13에 나타내었고, 곡선의 최고점 으로부터 계산된 초점면과 오차를 Table 3에 나 타내었다. 주변에 입자들이 존재하지 않는 경우 의 초점면을 입자의 정확한 위치로 간주한다면, 홀로그램 B에서는 10 μm, 홀로그램 C에서는 15 μm의 오차가 있는 것으로 간주할 수 있으며, 이 정도의 오차는 입자 초점면 결정에 있어서 충분 히 허용될 수 있는 오차범위 이내라고 볼 수 있 다.

 Table 3 Focal planes of the first bead in Fig. 12

 calculated by the CC method(Unit : mm)

	hologram A	hologram B	hologram C
Focal plane	173.125	173.115	173.110
Error (μm)		10	15

(a) hologram A (b) hologram B (c) hologram C **Fig. 12** Holograms of the glass beads and ROIs

Fig. 13 CC curves for the holograms in Fig. 12

따라서, 상관계수법을 이용한 초점면 결정에서 다른 입자의 영향은 ROI가 다른 입자들을 중첩 되게 포함하더라도 매우 작게 나타나, 실제 분무 영역같이 실험 공간에 많은 입자가 존재하더라도 큰 문제점이 없이 적용될 수 있을 것으로 판단된 다.

5. 결 론

본 연구에서는 매우 정밀한 이송 정확도를 가 지고 있는 이송장치를 사용하여, 디지털 입자 홀 로그래피에서 상관계수법을 사용한 입자의 초점 면 결정 방법을 검증할 수 있는 실험을 수행하였 다. 대상 입자는 이전 연구에서 사용한 2차원 평 면상의 점뿐만 아니라, 3차원적인 유리구와 액적 을 사용하였다.

2차원 평면상의 점에 대한 결과는 상관계수법 에 의한 2차원 입자의 초점면 결정에 있어서의 오차가 최대 30 μm 이내이며, 이전 실험 결과나 홀로그램의 수치모사 방법에 의한 결과와도 일치 하였다. 3차원 액적의 경우, 최대 오차는 30 μm 이내이지만, 거리가 멀어지고 크기가 큰 입자의 경우에도 2차원 경우보다 오차가 더 작게 나타났 다. 초점면 결정에 있어서 다른 입자들의 영향도 조사하였으며, 해석 영역에 다른 입자들이 포함 되거나, 중첩되더라도 그 영향이 크지 않음을 알 수 있었다.

따라서, 이러한 결과들로부터 상관계수법을 이 요한 입자의 초점면 결정 방법이 디지털 입자 홀 로그래피에서 입자의 광축 방향 위치를 결정하는 데 있어서 유용하게 적용될 수 있음을 확인할 수 있었다.

참고문헌

(1) Schnars, U. and Jueptner, W., 2002, "Digital

Recording and Numerical Reconstruction of Holograms," *Meas. Sci. Technol.*, Vol. 13, pp. 85~101.

- (2) Yu, L. and Cai, L., 2001, "Iterative Algorithm With a Constraint Condition for Numerical Reconstruction of Three-Dimensional Object from Its Hologram," *J. Opt. Soc. Am. A*, Vol. 18, pp. 1033~1045.
- (3) Dubois, F., Schockaert, C., Callens, N., and Yourassowsky, C., 2006, "Focus Plane Detection Criteria in Digital Holography Microscopy by Amplitude Analysis," *Opt. Express*, Vol. 14, pp. 5895~5980.
- (4) Lefebvre, C. B., Coëtmellec, S., Lebrun, D., and Özkul, C., 2000, "Application of Wavelet Transform to Hologram Analysis: Three-Dimensional Location of Particles," *Opt. Laser Eng.*, Vol. 33, pp. 409~421.
- (5) Zhang, Y., Zheng, D. X., Shen, J. L., and Zhang, C. L., 2005, "3D Locations of the Object Directly from in-Line Holograms Using the Gabor Transform," *Proc. SPIE* 5636, pp. 116~120.
- (6) Choo, Y. J. and Kang, B. S., 2006, "The Characteristics of the Particle Position Along an Optical Axis in Particle Holography," *Meas. Sci. Technol*, Vol. 17, pp. 761~770.
- (7). Yang, Y., Kang, B. S., and Choo, Y. J., 2008, "Application of the Correlation Coefficient Method for Determination of the Focal Plane to Digital Particle Holography," *Applied Optics*, Vol. 47, pp. 817~824.
- (8) Schnars, U. and Jueptner, W., 2005, *Digital Holography*, Springer, Berlin, pp. 41~45.
- (9) Yang, Y. and Kang, B. S., 2007, "Application of Digital Holography to Sprays," *Proceedings of Asia Display 2007*, pp. 2055~2059.

790