DOI QR코드

DOI QR Code

Anti-oxidative and Anti-inflammatory Effects of Genistein in BALB/c Mice Injected with LPS

LPS 주사한 BALB/c 마우스에서 Genistein의 산화적 스트레스 억제효과 및 항염증 효과

  • Cho, Hye-Yeon (Paik Inje Memorial Clinical Research Institute, School of Medicine, Inje University) ;
  • Noh, Kyung-Hee (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University) ;
  • Cho, Mi-Kyung (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University) ;
  • Jang, Ji-Hyun (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University) ;
  • Lee, Mi-Ok (Korean Food & Culinary Arts Department, Youngsan University) ;
  • Kim, So-Hee (School of Culinary Art & Baking Technology, Dong-Ju College) ;
  • Song, Young-Sun (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University)
  • 조혜연 (인제대학교 의과대학 백인제기념 임상의학연구소) ;
  • 노경희 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재연구센터) ;
  • 조미경 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재연구센터) ;
  • 장지현 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재연구센터) ;
  • 이미옥 (영산대학교 한국식품조리학과) ;
  • 김소희 (동주대학 외식조리제과계열) ;
  • 송영선 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재연구센터)
  • Published : 2008.09.30

Abstract

This study was carried out to investigate the anti-oxidative and anti-inflammatory actions of genistein in BALB/c mice injected with lopopolysaccharide (LPS), called endotoxin. Mice (10 weeks of age) weighing approximately 20 g were divided into 4 groups. Endotoxin shock was induced by intraperitoneal injection of LPS (100 mg/kg BW). LPS and genistein+LPS groups were injected with LPS 30 min after phosphate buffered saline (PBS) solution and genistein (200 mg/kg BW) injections, respectively. Genistein group was injected with genistein, followed by PBS, while PBS group received two injections of PBS. Superoxide anion generation of peritoneal macrophage cells was significantly (p<0.05) lower in the genistein+LPS group than in the LPS injection group at 8 h after intraperitoneal injection, while SOD activity was significantly higher in genistien+LPS group than LPS group. Tumor necrosis factor-$\alpha$ levels of plasma were significant lower (p<0.05) in the genistein+LPS injection group than LPS group at 8 h after intraperitoneal injection. Plasma TBARS was lower in genistein+LPS group than LPS group, while hepatic TBARS were not different among groups. Hepatic glutathione concentrations and antioxidant enzyme activities were ignificantly higher in the genistein+LPS group than in the LPS group at 1 h and 8 h after intraperitoneal injection. Nuclear factor-kappa B (NF-${\kappa}B$) transactivation was significantly (p<0.05) inhibited in LPS group. These results demonstrate genistein may ameliorate inflammatory diseases through inhibition of NF-${\kappa}B$ transactivation and oxidative stress, which may be mediated partially by anti-oxidative effect of genistein.

본 연구에서는 내독소인 LPS로 산화적 스트레스를 유발시킨 BALB/c mice에 genistein을 투여하였을 때 TNF-$\alpha$, TBARS, superoxide anion 농도와 GSH, 항산화 효소계 활성, 그리고 NF-${\kappa}B$ transactivation에 미치는 영향을 조사하여 genistein이 내독소에 의한 산화적 스트레스와 염증반응을 억제하는 효과가 있는지 알아보고자 하였다. 평균체중 20 g인 BALB/c mice 암컷 120수를 30수씩 완전임의배치로 4군으로 분류하여 PBS군(대조군)은 PBS를 복강 속으로 투여 후 30분경과 후에 다시 PBS를 투여하였으며, genistein군은 genistein을 체중 kg당 200 mg으로 투여한 30분 후 PBS를 투여하였다. LPS군은 LPS를 처리한 군으로 PBS 투여 30분 후 LPS를 체중 kg당 100 mg 농도로 복강 투여하였고, genistein+LPS군은 체중 kg당 genistein 200 mg을 투여 30분 후 LPS를 체중 kg당 100 mg을 투여하였다. 마지막 투여 1시간, 4시간, 8시간 경과 후 mouse의 안와정맥으로부터 혈액을, 복강으로부터 복강대식세포와 간을 취하였다. LPS 투여 8시간 경과 후 LPS군의 ${O_2}^-$ 생성량은 현저하게 증가하였으며 geinstein+LPS군은 genistein 대조군, PBS군과 비슷한 수준을 유지하였다. 반면 SOD 활성은 geinstein+LPS군이 LPS군에 비해 유의적으로 높은 수준이었다. 혈장에서의 TNF-$\alpha$ 수준은 LPS 투여 8시간 후 genstein+LPS군이 LPS군보다 유의적으로 낮은 수준을 보였다. LPS 투여는 항산화 효소계 활성과 GSH의 수준을 감소하였으나, genistein을 투여한 genistein+LPS군은 LPS군에 비해 GSH 농도와 catalase, GSH-px, GSH-reductase 활성이 모두 유의적으로 증가하는 결과를 보였다. 간에서의 NF-${\kappa}B$ transactivation 정도는 LPS 투여 후 1시간, 4시간 경과 후에 PBS군에 비해 LPS군과 genistein+LPS군에서 유의적으로 높은 수준이었으나 8시간 경과 후 LPS군은 증가하는 반면 genistein+LPS군은 변화하지 않았다. 이상의 결과를 요약해보면 LPS의 투여는 혈장과 간의 산화적 스트레스와 염증반응을 촉진하는 것으로 나타났으며 LPS 투여 전 공급한 genistein은 LPS로 유도된 산화적 스트레스와 염증반응을 항산화 효소계 활성 증가와 NF-${\kappa}B$ transactivation 억제, TNF-$\alpha$ 생성 저하 등의 기작으로 세포내의 과산화수준을 수준을 낮추고 GSH를 증가시켜 산화적 스트레스를 억제하는 것으로 사료된다.

Keywords

References

  1. Lee YS, Jang SY, Kim KO. 2005. Effect of soy isoflavone intake on nitrite content and antioxidant enzyme activities in male rats fed high-fat diet. Korean J Nutr 38: 89-95
  2. Bibgham SA, Atkinson C, Liggins J. 1998. Phytoestrogen; where are we now? Br J Nutr 79: 393-406 https://doi.org/10.1079/BJN19980068
  3. Ruiz-Larrea MB, Mohan AR, Paganga G. 1997. Antioxidant activity of phytoestrgenic isoflavones. Free Radic Res 26: 63-70 https://doi.org/10.3109/10715769709097785
  4. Wei HC, Wei LH, Frenkel K. 1993. Inhibition of tumor promotor-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr Cancer 20: 1-12 https://doi.org/10.1080/01635589309514265
  5. Sekizaki H, Yokosawa R, Chinen C. 1993. Synthesis is isoflavones and their attracting activity to Aphanomyces euteiches zoospore. Biol Pharm Bull 16: 698-701 https://doi.org/10.1248/bpb.16.698
  6. Kapiotis S, Hermann M, Held I. 1997. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17: 2868-2874 https://doi.org/10.1161/01.ATV.17.11.2868
  7. Lee YS, Xiaowei C, Anderson J. 2001. Physiological concentrations of genistein stimulate the proliferation and protect against free radical-induced oxidative damage of MC3T3-E1 osteoblast-like cells. Nutr Res 21: 1287-1298 https://doi.org/10.1016/S0271-5317(01)00340-2
  8. Rodrdanz E, Ohler S, Tran-Thi QH, Kahl R. 2002. The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. J Nutr 132: 370-375
  9. Jang HR. 2002. The effects of soy isoflavone on the factors relating to vascular disease in ovariectomized and hyperlipidemic rats. MS Thesis. Seoul National University, Seoul
  10. Wiseman H, O'Reilly JD, Adlercreutz H, Mallet AI, Bowey EA, Rowland JR, Sanders T. 2000. Isoflavone phytoestrogens consumed in soy decrease F2-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr 72: 395-400
  11. Jenkins DJ, Kendall CW, Jackson CJ, Connelly PW, Parker T, Faulkner D, Vidgen E, Cunnane SC, Leiter LA, Josse RG. 2002. Effects of high- and low-isoflavone soyfoods on blood lipids, oxidized LDL, homocystein, and blood pressure in hyperlipidemic men and women. Am J Clin Nutr 76: 365-372
  12. Zhan S, Ho SC. 2005. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 81: 397-408
  13. Yeung J, Yu TF. 2003. Effects of isoflavone (soy phyto-estrogen) on serum lipid: a meta-analysis of randomized controlled trials. Nutr J 2: 15-22 https://doi.org/10.1186/1475-2891-2-15
  14. Weggemans RM, Trautwein EA. 2003. Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: a meta-analysis. Eur J Clin Nutr 57: 940-946 https://doi.org/10.1038/sj.ejcn.1601628
  15. Zhuo XG, Melby MK, Watanabe S. 2004. Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans J Nutr 134: 2395-2400
  16. Belleville J. 2002. Hypocholesterolemic effect of soy protein. Nutrition 18: 684-686 https://doi.org/10.1016/S0899-9007(02)00799-2
  17. Choi JM, Ryu HJ, Chung JH, Park JC, Hwang JK, Shin DB, Lee SK, Ryang R. 2005. Antioxidant property of genistein: inhibitory effect on HOCl induced protein degradation, DNA cleavage, and cell death. Food Sci Biotechnol 14: 399-404
  18. Lai HH, Yen GC. 2002. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci Biotechnol Biochem 66: 22-28 https://doi.org/10.1271/bbb.66.22
  19. Sarkar FH, Li Y. 2003. Soy isoflavones and cancer prevention. Cancer Invest 21: 744-757 https://doi.org/10.1081/CNV-120023773
  20. Xu J, Loo G. 2001. Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cance cell lines. J Cell Biochem 82: 78-88 https://doi.org/10.1002/jcb.1147
  21. Pesce N, Eyster KM, Williams JL, Wixon R, Wang C, Martin DS. 2000. Effect of genistein on cardiovascular responses to angiotensin II in conscious unrestrained rats. J Cardiovasc Pharmacol 36: 806-809 https://doi.org/10.1097/00005344-200012000-00018
  22. Migliaccio S, Anderson JJ. 2003. Isoflavones and skeletal health: are these molecules ready for clinical application? Osteoporos Int 14: 361-368 https://doi.org/10.1007/s00198-002-1372-1
  23. Zielonka J, Gbicki J, Grynkiewicz G. 2003. Radical scavenging properties of genistein. Free Radi Biol Med 35: 958-965 https://doi.org/10.1016/S0891-5849(03)00472-6
  24. Qiong G, Gerald R, Hadi M, Stafan W, Lester P. 2002. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxicology 179: 171-180 https://doi.org/10.1016/S0300-483X(02)00241-X
  25. Cho SY, Oh YJ, Park JY, Lee MK, Kim MJ. 2003. Effect of dandelion (Taraxacum officinale) leaf extracts on hepatic antioxidative system in rats fed high cholesterol diet. J Korean Soc Food Sci Nutr 32: 458-463 https://doi.org/10.3746/jkfn.2003.32.3.458
  26. Ito T, Ikeda U. 2003. Infammatory cytokines and cardiovascular disease. Curr Drug Targets Inflamm Allergy 2: 257-2 https://doi.org/10.2174/1568010033484106
  27. Bratus VV, Talaieva TV, Radalovska NV. 1999. The role of a systemic inflammatory process in the atherogenic modification of lipoproteins and the development of hypercholesterolemia. Fiziol Zh 45: 40-49
  28. Kanters E, Pasparakis M, Gijbels M. 2003. Inhibition of NF-$\kappa$B activation in macrophages increase atherosclerosis in LDL receptor-deficient mice. J Clin Invest 112: 1176-1185 https://doi.org/10.1172/JCI200318580
  29. Yamamoto Y, Gaynor RB. 2004. Ikappa B kinase: key regulators of the NF-kappa B pathway. Trends Biochem Sci 29: 72-79 https://doi.org/10.1016/j.tibs.2003.12.003
  30. Comalada M, Ballester I, Bailon E, Sierra S, Xaus J, Galvez J, Media FS, Zarzuelo A. 2006. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure-activity relationship. Biochem Pharmacol 72: 1010-1021 https://doi.org/10.1016/j.bcp.2006.07.016
  31. Victor VM, De Lafuente M. 2003. Changes in the superoxide production and other macrophage functions could be related to the mortality of mice with endotoxin-induced oxidative stress. Physiol Res 52: 101-110
  32. Chae BS. 2002. Comparative study of the endotoxemia and endotoxin tolerance on the production of Th cytokines and macrophage interleukin-6: differential regulation of indomethacin. Arch Pharm Res 25: 910-916 https://doi.org/10.1007/BF02977013
  33. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in antioxidant of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  34. Kirk EA, Dinauer MC, Rosen H, Chait A, Heinecke JW, LeBoeuf RC. 2000. Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Atheroscler Thromb Vasc Biol 20: 1529-1535 https://doi.org/10.1161/01.ATV.20.6.1529
  35. Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. In Methods in Enzymology. Fleischer S, Packer L, eds. Academic press, New York, USA. Vol 52, p 302-306
  36. Fraga CG, Leibovita RM, Roeder RG. 1988. Lipid peroxidation measured as thiobarbituric-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4: 155-161 https://doi.org/10.1016/0891-5849(88)90023-8
  37. Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissue. Anal Biochem 27: 502-522 https://doi.org/10.1016/0003-2697(69)90064-5
  38. Aebi H. 1984. Catalase in vitro in method of enzymology. Academic press, Grlando, Florida, USA. Vol 150, p 121
  39. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Comm 71: 952-958 https://doi.org/10.1016/0006-291X(76)90747-6
  40. Inger C, Bengt M. 1985. Glutathione reductase. In Methods in Enzymology. Fleischer S. Packer L, eds. Academic press, New York, USA. Vol 113, p 484-490
  41. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Ann Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  42. Dignam JD, Lebovitz RM, Roeder RG. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475-1498 https://doi.org/10.1093/nar/11.5.1475
  43. Sun T, Xie W, Xu P. 2004. Superoxide anion scavenging activity of graft chitosan derivatives. Carbohydrate Polymers 58: 379-382 https://doi.org/10.1016/j.carbpol.2004.06.042
  44. Frintche K, Johnston PV. 1988. Rapid autooxidation of fish oil in diets without added antioxidants. J Nutr 118: 425-426
  45. Davis JN, Kucuk O, Djuric Z, Sarkar FH. 2001. Soy isoflavone supplementation in healthy men prevents NF-$\kappa$B activation by TNF-$\alpha$ in blood lymphocytes. Free Radic Biol Med 30: 1293-1302 https://doi.org/10.1016/S0891-5849(01)00535-4
  46. Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM. 1991. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88: 1747-1754 https://doi.org/10.1172/JCI115493
  47. Lehner MD, Ittner J, Bundschuh DS, van Rooilen N, Wendel A, Hartung T. 2001. Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica serovar Typhimurium infection despite attenuated cytokine response. Infect Immun 69: 463-471 https://doi.org/10.1128/IAI.69.1.463-471.2001
  48. Ben-Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M, Grossman S. 2001. The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol lett 123: 1-10 https://doi.org/10.1016/S0378-4274(01)00369-1
  49. Iqbal M, Cohen RI, Marzouk K, Liu SF. 2002. Time course ofnitric oxide, peroxynitrite, and antioxidants in the endotoxemic heart. Crit Care Med 30: 1291-1296 https://doi.org/10.1097/00003246-200206000-00021
  50. Watson AM, Warren G, Howard G, Shedlofsky SI, Blouin RA. 1999. Activities of conjugating and antioxidant enzymes following endotoxin exposure. J Biochem Mol Toxicol 13: 63-69 https://doi.org/10.1002/(SICI)1099-0461(1999)13:2<63::AID-JBT1>3.0.CO;2-I
  51. Kang YH, Park YK, Ha TY, Moon KD. 1996. Effects of pine needle extracts on enzyme activities of serum and liver and liver morphology in rats fed high diet. J Korean Soc Food Sci Nutr 25: 374-378
  52. Geeta S, Ravindra N, Kiran DG. 1991. Effect of ethanol on Cd-induced lipid peroxidation and antioxidant enzymes in rat liver. Biochem Pharmacol 42: S9-S16 https://doi.org/10.1016/0006-2952(91)90386-J
  53. Allen R, Tresini M. 2000. Oxidative stress and gene regulation. Free Radic Biol Med 28: 463-499 https://doi.org/10.1016/S0891-5849(99)00242-7
  54. Gius D, Botero A, Shah, Curry HA. 1999. Intracellular oxidation/reduction status in the regulation of transcription factors NF-$\kappa$B and AP-1. Toxicol Lett 106: 93-106 https://doi.org/10.1016/S0378-4274(99)00024-7
  55. Li N, Karin M. 1999. Is NF-$\kappa$B the sensor of oxidative stress? FASEB J 13: 1137-1143
  56. Hernandez-Presa MA, Bustos C, Ortego M. 1997. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95: 1532-1541 https://doi.org/10.1161/01.CIR.95.6.1532

Cited by

  1. Anti-inflammatory Effects of Pyropia yezoensis Extract in LPS-stimulated RAW 264.7 cells vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0757
  2. Effects of Longanae Arillus Water Extract on Inflammatory Response and Cytokines in Mouse Macrophage Cells vol.27, pp.2, 2014, https://doi.org/10.15204/jkobgy.2014.27.2.001
  3. Effect of Hericium erinaceus Mycelia Supplementation on the Oxidative Stress and Inflammation Processes Stimulated by LPS and Their Mechanisms in BALB/C Mice vol.39, pp.2, 2010, https://doi.org/10.3746/jkfn.2010.39.2.227
  4. The Effect of Phaseoli Semen Herbal-acupuncture at KI10 in Lipopolysaccharide Induced Acute Nephritis in Rats vol.30, pp.3, 2013, https://doi.org/10.13045/acupunct.2013006
  5. Anti-inflammatory Effect of Angelicae Gigantis Radix Water Extract on LPS-stimulated Mouse Macrophages vol.28, pp.5, 2013, https://doi.org/10.6116/kjh.2013.28.5.113
  6. 현참(玄參) 물추출물이 LPS로 유발된 대식세포의 염증인자에 미치는 영향 vol.32, pp.3, 2017, https://doi.org/10.6116/kjh.2017.32.3.1
  7. 자초(紫草) 열수 추출물의 RAW 264.7 세포에서 IL-1β, TNF-α, iNOS 유전자 발현에 미치는 영향 연구 vol.31, pp.4, 2008, https://doi.org/10.15188/kjopp.2017.08.31.4.220
  8. 참당귀, 중국당귀, 일당귀 열수 추출물의 RAW 264.7 대식세포에서 IL-1β, TNF-α, iNOS 유전자 차등 발현 연구 vol.15, pp.11, 2008, https://doi.org/10.14400/jdc.2017.15.11.513
  9. 염증유도 RAW264.7 세포와 동물모델에서 구기자와 구기엽의 항염 효능 vol.52, pp.2, 2019, https://doi.org/10.4163/jnh.2019.52.2.129
  10. Efficacy of Artemisia annua L. extract for recovery of acute liver failure vol.8, pp.7, 2008, https://doi.org/10.1002/fsn3.1662