DOI QR코드

DOI QR Code

Effect of Monascus-fermentation on the Content of GABA and Free Amino Acids in Soybean

홍국균 발효가 콩의 GABA와 유리아미노산 함량에 미치는 영향

  • Pyo, Young-Hee (Dept. of Food and Nutrition, Sungshin Women's University)
  • 표영희 (성신여자대학교 식품영양학과)
  • Published : 2008.09.30

Abstract

The changes in the contents of GABA ($\gamma$-aminobutyric acid) and free amino acids (FAA) were analysed by HPLC in soybean fermented with Monascus pilosus IFO 480, which showed the highest GABA-producing ability among the five different strains. The significant increase (p<0.05) of GABA was observed in Monascusfermented soybean (MFS) with an average 4.5-fold increase of FAA. The contents of GABA (78.5 mg /100 g dry weight, dw) and FAA (5458.5 mg /100 g dw) were enhanced in MFS compared with unfermented soybean (31.5 mg /100 g dw, 1634.0 mg/100 g dw, respectively) during 30 days fermentation at $30^{\circ}C$. Acidic amino acids (i.e., glutamic acid and aspartic acid) in FAA files were found in large quantities (837.0 mg /100 g dw, 580.5 mg /100 g dw, respectively). Moreover, the sum of essential amino acids of MFS (1681.5 mg /100 g dw) at 20 days fermentation increased by 3.6 times compared with that of the control (469.0 mg /100 g dw). The results indicate that Monascus-fermentation have great potential for the enrichment of GABA and free amino acids in soybean.

콩 기질에 대한 홍국균의 접종 발효는 원료 콩에 함유된 GABA와 유리아미노산의 함량을 강화시키는 유효한 발효 기법으로 나타났다. 선별된 5가지 균주(M. pilosus IFO 480, M. anka IFO 873, M. kaoliang ATCC 592, M. purpurea IFO 482, M. kaling ATCC 598)로 발효시킨 홍국 발효콩은 비발효콩에 비해 GABA의 함량이 2배 이상 증가되는 것으로 나타났으며, 가장 활성이 강한 균은 Monascus pilosus IFO 480으로 나타났다. Monascus pilosus IFO 480으로 $30^{\circ}C$에서 30일간 발효시킨 홍국 발효콩의 발효기간 중 GABA(발효 20일)와 유리아미노산(발효 10일) 함량의 최대 변화는 비발효콩에 비해 각각 2.5배와 5.6배 증가되었다. 특히 발효 20일 경에 GABA의 생성량은 건조 발효콩 100 g당 78.5 mg으로 나타나 비발효콩의 31.5 mg에 비해 149% 증가된 것으로 비교되었다. 또한 홍국 발효콩에 함유된 필수아미노산의 함유율은 비발효콩에 비해 3.6배 증가되었으며 특히 threonine, leucine, lysine 등의 증가율은 비발효콩에 비해 $12{\sim}24$배까지 두드러져 홍국 발효콩은 이들 아미노산의 강화에 매우 유효한 발효기법으로 나타났다. 따라서 GABA와 필수아미노산의 함량이 강화된 홍국 발효콩은 다양한 약리학적 소재뿐 아니라 영양학적 소재류에서도 매우 활용가능성이 높은 복합기능성의 신소재로 평가할 수 있다.

Keywords

References

  1. Shelp BJ, Bown AW, McLean MD. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science 4: 446-452 https://doi.org/10.1016/S1360-1385(99)01486-7
  2. Wallace W, Secor J, Schrader LE. 1984. Rapid accumulation of $\gamma$-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol 75: 170-175 https://doi.org/10.1104/pp.75.1.170
  3. Erlander MJ, Tobin AJ. 1991. The structural and functional hetero geneity of glutamic acid decarboxylase: a review. Neurochem Res 16: 215-226 https://doi.org/10.1007/BF00966084
  4. Ueno H. 2000. Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal 10: 67-79 https://doi.org/10.1016/S1381-1177(00)00114-4
  5. Crawford LA, Bown AW, Breitkreuz KE, Guinel FC. 1994. The synthesis of $\gamma$-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol 104: 865-871
  6. Guin TWC, Bottiglieri T, Carter SO. 2003. GABA, $\gamma$-aminobutyric acid, and neurological disease. Ann Neurol 6: 3-12
  7. Cho YU, Chang JY, Chang HC. 2007. Production of GABA by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17: 104-109
  8. Stanton HC. 1963. Mode of action of $\gamma$-aminobutyric acids on the cardiovascular system. Arch Int Pharmacodyn 143: 195-204
  9. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. 2003. Blood-pressure-lowering effect of a novel fermented milk containing $\gamma$-aminobutyric acid in mild hypertensives. Eur J Clin Nutr 57: 490-495 https://doi.org/10.1038/sj.ejcn.1601555
  10. Yamakoshi J, Fukuda S, Satoh T, Tsuji R, Saito M, Obata A, Matsuyama A, Kikuchi M, Kawasaki T. 2007. Antihypertensive and natriuretic effects of less-sodium soy sause containing $\gamma$-aminobutyric acid in spontaneously hypertensive rats. Biosci Biotechnol Biochem 71: 165-173 https://doi.org/10.1271/bbb.60424
  11. Endo A. 1979. Monacolin-K, a new hypocholesterolemic agent produced by Monascus species. J Antibiot 32: 852-854 https://doi.org/10.7164/antibiotics.32.852
  12. Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. 2000. Constituents of red yeast rice, a traditional chinese food and medicine. J Agric Food Chem 48: 5220-5225 https://doi.org/10.1021/jf000338c
  13. Manzoni M, Rollini M. 2002. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. App Microbiol Biotechnol 58: 555-564 https://doi.org/10.1007/s00253-002-0932-9
  14. Wang IK, Lin-Shiau SY, Chen PC, Lin JK. 2000. Hypotriglyceridemic effect of Ankak (fermented rice product of Monascus sp.) in rat. J Agric Food Chem 48: 3183-3189 https://doi.org/10.1021/jf9909353
  15. Pyo YH. 2007. Production of a high value-added soybean containing bioactive mevinolin and isoflavones. J Food Sci Nutr 12: 29-34 https://doi.org/10.3746/jfn.2007.12.1.029
  16. Pyo YH, Lee YC. 2007. Production method of Monascusfermented soybean. Korea Patent 10-0734612
  17. Pyo YH. 2007. Comparison of antioxidant potentials in methanolic extracts from soybean and rice fermented with Monascus sp. Food Sci Biotechnol 16: 451-456
  18. Pyo YH, Lee TC. 2007. The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: Evaluation of Monascus-fermented soybean extracts as multifuntional food additives. J Food Sci 72: S218-S223 https://doi.org/10.1111/j.1750-3841.2007.00312.x
  19. Rhyu MR, Kim EY. 2002. The relations between antihypertensive effect and $\gamma$-aminobutyric acid, mycelial weight and pigment of Monascus. Korean J Food Sci Technol 34: 737-740
  20. Park JS, Lee MR, Kim JS, Lee TS. 1994. Compositions of nitrogen compound and amino acid in soybean paste (Doenjang) prepared with different microbial sources. Korean J Food Sci Technol 26: 609-615
  21. Kim MH, Kang WW, Lee NH, Kwon DJ, Kwon OJ, Chung YS, Hwang YH, Choi UK. 2007. Changes in quality characteristics of cheonggukjang made with germinated soybean. Korean J Food Sci Technol 39: 676-680
  22. Kim TJ, Sung CH, Kim YJ, Jung BM, Kim ER, Choi WS, Jung HK, Chun HN, Kim WJ, Yoo SH. 2007. Effects of soaking-fermentation drying process on the isoflavone and $\gamma$-aminobutyric acid contents of soybean. Food Sci Biotechnol 16: 83-89
  23. Pyo YH. 2006. Optimum conditions for production of mevinolin from the soybean fermented with Monascus sp. Korean J Food Sci Technol 38: 256-261
  24. Mengerink Y, Kutlan D, Toth F, csampai A, Molnar-Perl I. 2002. Advances in the evaluation of the stability and characteristics of the amino acid and amine derivatives obtained with the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-L-cysteine reagents. HPLC-mass spectrometry study. J Chromatogr A 949: 99-124 https://doi.org/10.1016/S0021-9673(01)01282-1
  25. Rozan P, Kuo YH, Lambein F. 2000. Free amino acids present in commercially available seedlings sold for human consumption. A potential hazard for consumers. J Agric Food Chem 48: 716-723 https://doi.org/10.1021/jf990729v
  26. Park KB, Oh SH. 2007. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technol 98: 1675-1679 https://doi.org/10.1016/j.biortech.2006.06.006
  27. Choi SI, Lee JW, Park SM, Lee MY, Ji GE, Park MS, Heo TR. 2006. Improvement of GABA production using cell entrapment of Lactobacillus brevis GABA 057. J Microbiol Biotechnol 16: 562-568
  28. Kono I, Himeno K. 2000. Changes in $\gamma$-aminobutyric acid content during beni-koji making. Biosci Biotechnol Biochem 64: 617-619 https://doi.org/10.1271/bbb.64.617
  29. Aoki H, Uda I, Tagami K, Furuya Y, Endo Y, Fujimoto K. 2003. The production of a new Tempeh-like fermented soybean containing a high level of $\gamma$-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem 67: 1018-1023 https://doi.org/10.1271/bbb.67.1018
  30. Baumann U, Bisping B, Rehm HJ. 1991. Content and release of amino acids during the fermentation of tempe by several strains of Rhizopus sp. Dechema Biotechnology Conference. Behrens D, Wiley Europe, Weinheim. Vol 4, p 205-208
  31. Kono I, Himeno K. 2002. Accumulation of $\gamma$-aminobutyric acid in beni-koji after anaerobic incubation. J Brew Soc Japan 97: 785-790 https://doi.org/10.6013/jbrewsocjapan1988.97.785
  32. Streeter JG, Thompson JF. 1972. Anaerobic accumulation of $\gamma$-aminobutyric acid and alanine in radish leaves (Raphanus sativus L.). Plant Physiol 49: 572-578 https://doi.org/10.1104/pp.49.4.572
  33. Kamiya T. 2002. Biological functions and health benefits of amino acids. Food Ingredients J Jpn 206: 33-44
  34. Aoyama N, Fukui K, Yamamoto T. 1996. Effect of various forms of force-fed nitrogen sources on gastric transit times in rat. Nippon Eiyo Shokuryo Gakkaishi 49: 46-51 https://doi.org/10.4327/jsnfs.49.46
  35. Hoppe MB, Jha HC, Egge H. 1997. Structure of antioxidant from fermented soybeans (tempeh). J Am Oil Chem Soc 74: 477-479 https://doi.org/10.1007/s11746-997-0110-4

Cited by

  1. Changes in Physicochemical Properties of Actinidia arguta (Siebold & Zucc.) Planch. ex Miq. by Blanching, Drying, and Fermentation vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.425
  2. Isolation and Identification of GABA-producing Microorganism from Chungkookjang vol.23, pp.1, 2013, https://doi.org/10.5352/JLS.2013.23.1.102
  3. Analysis of Functional Components of the Perilla Leaves (Perilla frutescens var. japonica Hara) Grown in Organic and Conventional Conditions vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.517
  4. Development of Sugar-Soaked Black Soybean Snack and Its Quality Change on Functional Components vol.40, pp.6, 2011, https://doi.org/10.3746/jkfn.2011.40.6.853
  5. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products vol.34, pp.4, 2014, https://doi.org/10.5851/kosfa.2014.34.4.552
  6. Qualities and Antioxidant Activity of Lactic Acid Fermented-Potato Juice vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.542
  7. Anti-obesity and Anti-hyperlipidemic Activities of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.341
  8. Characteristics of Chungkookjang that Enhance the Flavor and GABA Content in a Mixed Culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1102
  9. Anti-Inflammatory Effects of Fusion-Fermented Aralia continentalis Radix (fACR) on THP-1 cells vol.14, pp.1, 2016, https://doi.org/10.14400/JDC.2016.14.1.353
  10. 스트렙토조토신으로 유도된 당뇨 마우스에서 Monascus purpureus을 이용한 발효 쑥의 기억력 개선 효과 vol.49, pp.5, 2008, https://doi.org/10.9721/kjfst.2017.49.5.550
  11. 재배지역, 수확시기 및 숙기에 따른 여주의 γ-Aminobutyric Acid 함량 변화 및 분석법 검증 vol.31, pp.3, 2008, https://doi.org/10.9799/ksfan.2018.31.3.408
  12. Optimal enzymatic hydrolysis conditions for increased production of L-arginine and GABA in Dendropanax morbifera Lev. leaves vol.26, pp.3, 2019, https://doi.org/10.11002/kjfp.2019.26.3.289
  13. Changes in active compounds and biological activities during fermentation of soy-powder milk by the mixtures of probiotics lactic acid bacteria vol.27, pp.6, 2008, https://doi.org/10.11002/kjfp.2020.27.6.769
  14. Diversity of Bacillus groups isolated from fermented soybean foods (‘Doenjang’ and ‘Kanjang’) and their fermentation characteristics of ‘Cheonggukjang’ vol.27, pp.7, 2008, https://doi.org/10.11002/kjfp.2020.27.7.946
  15. 홍국발효 대두의 항산화 및 항당뇨 활성 vol.34, pp.2, 2021, https://doi.org/10.9799/ksfan.2021.34.2.187
  16. The role of carbon and nitrogen sources in the production of bioactive compounds in Monascus fermentation products: a mini review vol.924, pp.1, 2008, https://doi.org/10.1088/1755-1315/924/1/012083