DOI QR코드

DOI QR Code

Preparation and Characteristics of MWNT/SnO2 Nanocomposites Anode by Colloidal Heterocoagulation for Li-ion Battery

Heterocoagulation 법으로 제조된 이차전지용 MWNT/SnO2 나노복합음극재의 전기화학적 특성

  • Han, Won-Kyu (Division of Materials Science and Engineering, Hanyang University) ;
  • Hong, Seok-Jun (Division of Materials Science and Engineering, Hanyang University) ;
  • Hwang, Gil-Ho (Division of Materials Science and Engineering, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fine Chemical Engineering, Hanyang University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Cho, Jin-Ki (Department of advanced materials Engineering, Korea Polytechnic University) ;
  • Kang, Sung-Goon (Division of Materials Science and Engineering, Hanyang University)
  • 한원규 (한양대학교 신소재공학부) ;
  • 홍석준 (한양대학교 신소재공학부) ;
  • 황길호 (한양대학교 신소재공학부) ;
  • 좌용호 (한양대학교 정밀화학공학과) ;
  • 오승탁 (서울산업대학교 신소재공학과) ;
  • 조진기 (한국 산업기술 대학교 신소재 공학부) ;
  • 강성군 (한양대학교 신소재공학부)
  • Published : 2008.09.27

Abstract

Through the electrostatic interaction between the poly-diallydimethylammonium chloride (PDDA) modified Multi-walled carbon nanotube (MWNT) and $SnO_2$ suspension in 1mM $NaNo_3$ solution, MWNT-$SnO_2$ nanocomposites (MSC) for anode electrodes of a Li-ion battery were successfully fabricated by colloidal heterocoagulation method. TEM observation showed that most of the $SnO_2$ nanoparticles were uniformly deposited on the outside surface of the MWNT. Galvanostatic charge/discharge cycling tests showed that MSC anodes exhibited higher specific capacities than bare MWNT and better cyclability than unsupported nano-$SnO_2$ anodes. Also, after 20 cycles, the MSC anode fabricated by heterocoagulation method showed more stable cycle properties than the simply mixed MSC anode. These improved electrochemical properties are attributed to the MWNT, which adsorbs the mechanical stress induced from volume change and increasing electrical conductivity of the MSC anode, and suppresses the aggregation between the $SnO_2$ nanoparticles.

Keywords

References

  1. T. Tran, J. Feikert, X. Song and K. Kinosbita, J. Electrochem. Soc., 142, 3297 (1995) https://doi.org/10.1149/1.2049977
  2. Y. Idota, A. Matsufuji,Y. Mackawa and T. Miyasaka, Science, 276, 1395 (1997) https://doi.org/10.1126/science.276.5317.1395
  3. I. Rom, M. Wachtler, I. Papst, M. Chimed, J. O. Besenhard, F. Hofer and M.Winter, Solid State Ionics, 143, 329 (2001) https://doi.org/10.1016/S0167-2738(01)00886-4
  4. H. Li, X. J. Huang, L. Q. Chen, G. W. Zhou, Z. Zhang and D. P. Yu, Solid State Ionics, 135, 181 (2000) https://doi.org/10.1016/S0167-2738(00)00362-3
  5. C. J. Kim, M. J. Noh, M. S. Choi, J. P. Cho and B. W. Park, Chem. Mater., 17, 3297 (2005) https://doi.org/10.1021/cm048003o
  6. J. A. Toledo-Antonio, R. Gutie'rrez-Baez, P. J. Sebastian and A. Va' zqueza, J. Solid. State. Chem., 174, 241, (2003) https://doi.org/10.1016/S0022-4596(03)00181-6
  7. R. H. R. Castro, B. B. S. Murad and D. Gouvea, Ceram Int, 30, 2215 (2004) https://doi.org/10.1016/j.ceramint.2003.12.005
  8. I. A. Courtney and J. R. Dahn, J. Electrochem. Soc., 144, 2943 (1997) https://doi.org/10.1149/1.1837941
  9. I. A. Courtney, W. R. McKinnon and J. R. Dahn, J. Electrochem. Soc., 146, 59 (1999) https://doi.org/10.1149/1.1391565
  10. W. Chen, J. Y. Lee and Z. Liu, Electrochem Commun, 4, 260 (2002) https://doi.org/10.1016/S1388-2481(02)00268-0
  11. Z. P. Guo, Z.W.Zhao, H. K. Liu and S.X.Dou, Carbon, 43, 1392 (2005) https://doi.org/10.1016/j.carbon.2005.01.008