DOI QR코드

DOI QR Code

Development of Fatigue Model of Concrete Pavement Considering Environmental Loading

환경하중을 고려한 콘크리트 포장 피로모형의 개발

  • 임진선 (인하대학교 토목공학과) ;
  • 김연복 (한국건설기술연구원 도로시설연구부) ;
  • 정진훈 (인하대학교 토목공학과)
  • Received : 2008.09.01
  • Accepted : 2008.09.30
  • Published : 2008.11.30

Abstract

Fatigue cracking occurs over long time period because dynamic strength of slab continuously decreases by vehicle loading repetitively applied to the concrete pavement. To more accurately predict the fatigue life of the concrete pavement, the stress due to environmental loading should be considered prior to calculating the stress due to the vehicle loading because the stress due to temperature and moisture distribution always exists within the slab. Accordingly, a new fatigue model considering the environmental loading was developed in this research by evaluating factors of existing fatigue models most widely used and by making data points from the models. The applicability of the new model was evaluated by performing a fatigue analysis on the general concrete pavement structure using local climatic and traffic conditions in Korea. It was concluded that the top-down cracking due to the tensile stress at top of the slab is dominant cause of the fatigue failure than the bottom-up cracking occurred at bottom of the slab. More advanced fatigue analysis considering vehicle speed is expected by developing this study.

콘크리트 포장에 반복적으로 재하되는 차량의 하중에 의하여 슬래브의 동적강도는 꾸준히 감소하며 장기적으로 피로균열이 발생한다. 온도와 수분의 분포에 의하여 슬래브 내에는 항상 응력이 도입되어 있으므로 이를 고려한 후 차량하중의 영향을 추가해야만 보다 정확하게 콘크리트 포장의 피로수명을 예측할 수 있다. 따라서, 본 연구에서는 기존에 개발된 대표적 피로모형들의 각종 인자들을 평가하고 모형으로부터 데이터를 추출하여 환경하중을 고려하는 새로운 피로모형을 개발하였다. 국내 각 지역의 기상 및 교통조건을 사용하여 국내에서 일반적으로 시공되는 콘크리트 포장에 대한 피로해석을 수행하여 개발된 피로모형의 적용성을 평가하였다. 슬래브 하부에서 발생한 상향의 균열보다는 슬래브 상부의 인장응력에 의한 하향의 균열이 피로파손의 주요한 원인으로 판단되었다. 본 연구결과를 바탕으로 한 후속 연구를 통하여 차량의 속도가 고려된 피로해석도 수행될 수 있을 것으로 기대된다.

Keywords

References

  1. 건설교통부(2002) 콘크리트 포장 설계법 개발, 한국형 포장 설계법 1단계 1차년도 최종 보고서, pp. 189-242
  2. 건설교통부(2004) 콘크리트 포장 설계법 개발, 한국형 포장 설계법 1단계 3차년도 최종 보고서, pp. 15-83
  3. 건설교통부(2004) 아스팔트 포장 설계법 개발, 한국형 포장 설계법 1단계 3차년도 최종 보고서, G1 29-60
  4. 건설교통부(2006) 교통량 조사 차종 분류 가이드, 건설교통부
  5. 김동호, 최성용, 윤경구(2005) 등가 피로수명에 의한 콘크리트의 피로해석 및 모델, 대한토목학회논문집, 대한토목학회, 제25권 제3A호, pp. 505-510
  6. 안덕순, 박희문(2004) 현장 계측자료를 이용한 포장체 온도예측 모델 개발 연구, 한국도로학회 2004 학술발표대회 논문집, 한국도로학회, 제6권, pp. 17-20
  7. 임진선, 정진훈, 조윤호, 김연복(2008) 콘크리트 슬래브의 부등건조수축에 대한 연구, 한국도로학회 2008년도 봄학술대회 논문집, 한국도로학회, pp. 31-38
  8. 정길수, 김인태, 유성우, 조윤호(2008) 유한요소법을 이용한 줄눈 콘크리트 포장 응력식 개발, 한국도로학회 논문집, 한국도로학회, 제10권 2호, pp. 167-181
  9. Aas-Jakobsen, L. (1970). Fatigue of Concrete Beams and Columns. Bulletin No. 70-1, Division of Concrete Structures, NTH, Trondheim
  10. Ballinger, C.A. (1972). Cumulative Fatigue Damage Characteristics. Highway Research Record No. 370, Highway Research Board, National Research Council, pp. 48-60
  11. Cornelissen, H.A.W. and Reinhardt, H.W. (1984). Uniaxial tensile fatigue failure of concrete under constant-amplitude and programmed loading. Magazine of Concrete Research, Vol. 36, No. 129, pp. 216-226 https://doi.org/10.1680/macr.1984.36.129.216
  12. Darter, M.I. (1977). Design of Zero-Maintenance Plain Jointed Concrete Pavement, Volume 1: Development of Design Procedures, Federal Highway Administration Report No. FHWARD- 77-III
  13. Foxworthy, P.T. (1985) Concepts for the Development of a Nondestructive Testing and Evaluation System for Rigid Airfield Pavements, Ph.D. Thesis, University of Illinois, Urbana, Illinois
  14. Furtak, K. (1984) Ein Verfahren zur berechnung der betonfestigkeit unter schwellenden belastungen. Ceminar of Concrete Research, Vol. 14, No. 6, pp. 855-865 https://doi.org/10.1016/0008-8846(84)90012-7
  15. Graf, O. and Brenner, E. (1934) Versuche zur Ermittlung der Widerstandsfjahigkeit von Beton gegen oftmals wiederholte Druckbelastung. Deutscher Ausschuss fur Eisenbeton, Berlin, Bulletin 76
  16. Hanson, J.M. et al. (1974). Considerations for design of concrete structures subjected to fatigue loading. ACI Journal, Vol. 71, No. 3, pp. 97-120
  17. Hsu, T.T.C. (1981) Fatigue of plain concrete. ACI Journal, Vol. 78, No. 27, pp. 292-305
  18. Hilsdorf, H.K. and Kesler, C.E. (1966) Fatigue strength of concrete under varying flexural stresses. Journal of American Concrete Institute, Vol. 63, No. 10, pp. 1059-1075
  19. Janssen, D.J. (1987) Moisture in Portalnd Cement Concrete. Transportation Research Record 1121, TRB, National Research Council, Washington DC, pp. 40-44
  20. Kesler, C.E. (1953) Effect of speed of testing on flexural fatigue strength of plain concrete. Proceedings, Highway Research Board, Vol. 32, pp. 251-258
  21. Mohamed, A.R. and Hansen, W. (1996) Effect of nonlinear temperature gradient on curling stress in concrete pavement. Transportation Research Record 1568, TRB, National Research Council, Washington, DC, pp. 65-71
  22. Murdock, J.W. and Kesler, C.E. (1958) Effect of range of stress on fatigue strength of plain concrete beams. Journal of the American Concrete Institute, Vol. 30, No. 2, pp. 221-231
  23. Packard, R.G. (1974) Fatigue concepts for concrete airport pavement design. Journal of Transportation Engineering, ASCE Vol. 100, No. TE3. American Society of Civil Engineers, New York, NY
  24. Packard, R.G. and Tayabji, S.D. (1985). New PCA Thickness Design Procedure for Concrete Highway and street pavement. Third International Conference on Concrete Pavement design and Rehabilitation, Purdue University, pp. 225- 236
  25. Raithby, K.D. and Galloway, J.W. (1974) Effects of moisture condition, age and rate of loading on fatigue of plain concrete. Abeles Symposium, Fatigue of Concrete, ACI Publication SP-41, pp. 15-34
  26. Roesler, J.R. (1998) Fatigue of Concrete Beams and Slabs, Ph.D. Thesis, University of Illinois, Urbana, Illinois
  27. Shi, X.P., Fwa, T.F., and Tan, S.A. (1993) Flexural fatigue strength of plain concrete. ACI Material Journal, Vol. 90, No 5
  28. Tepfers, R. and Kutti, T. (1979) Fatigue strength of plain, ordinary, and lightweight concrete. Journal of the American Concrete Institute, Vol. 76, pp. 635-652
  29. Tepfers, R. (1982) Fatigue of plain concrete subjected to stress reversals. ACI Publication SP-75, pp. 195-217
  30. Zhang, B., Phillips, D.V., and Wu, K. (1996). Effect of loading frequency and stress reversal on fatigue life of plain concrete. Magazine of Concrete Research, Vol. 48, No. 177, pp. 361-375 https://doi.org/10.1680/macr.1996.48.177.361
  31. Wells, S.A., Phillips B.A., and Vandenbossche, J.M. (2006) Characterizing Strain Induced by Environmental Loads in Jointed Plain Concrete Pavements: Immediately After Paving and Throughout First 10 Months. Transportation Research Record 1947, TRB of the National Academies, Washington, DC, pp. 36-48