DOI QR코드

DOI QR Code

Development of a Nondestructive Seismic Technique for Flexural Rigidity of Concrete Track as Slab Displacement Index

콘크리트 슬래브궤도의 휨강성 평가를 위한 비파괴 탄성파 기법의 개발

  • Received : 2008.07.03
  • Accepted : 2008.10.13
  • Published : 2008.11.30

Abstract

Recently, concrete tracks are introduced into high-speed railroads as an alternative to ballast tracks. Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, flexural rigidity of concrete tracks was employed as an index of track displacement and a new seismic technique called FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) method was proposed to delineate flexural rigidity of concrete tracks in a 2-D image. In this paper, to establish theoretical background, parametric research was performed using numerical simulations of stress-wave tests at concrete tracks. Feasibility of the FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of DC resistivity survey performed at a shoulder nearby the track.

최근 고속전철의 자갈도상에 대한 대안으로 콘크리트 슬래브궤도가 도입되어 고속전철 신규노선에 시공되고 있다. 콘크리트 슬래브궤도는 자갈도상에 비해 내구성, 유지관리 측면에서의 경제성, 열차운행의 안정성 등의 측면에서 우위에 있지만, 우수 및 지하수로 인한 노반강성의 저하, 연약한 원지반의 침하 등으로 인한 슬래브궤도의 처짐은 열차안정성에 치명적인 결함이 된다. 본 연구에서는 슬래브궤도의 처짐 지표로서 슬래브궤도의 휨강성을 설정하고, 슬래브궤도의 휨강성을 2차원 영상으로 표현할 수 있는 FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) 기법이라는 비파괴 탄성파 기법을 제안하였다. 이론적 근거 확보를 위하여 콘크리트 슬래브궤도에서의 탄성파 시험을 수치해석적으로 모사하여 영향인자 연구를 수행하였고, FRACTAL 기법의 적용성 평가를 위하여 실제 고속전철 슬래브궤도에 적용하여 보았다. 그리고 FRACTAL 시험측선과 동일 측선에서 Impulse-Response 기법과 인접지반에서 전기비저항시험을 수행하여, FRACTAL 기법의 신뢰성을 검증하였다.

Keywords

References

  1. 조성호, 장대우, 강태호, 이일화(2005) CAP-SASW 기법에 의한 지반절편의 전단강성구조 평가. 한국지반공학회 논문집, 한국지반공학회, 제21권 제4호, pp. 71-81.
  2. Haskell, N.A. (1953) The dispersion of surface waves on multilayered madia. Bull. Seism. Soc. Am. Vol. 43, pp. 17-34.
  3. Joh, S.H. (1996) Advanced in Interpretation and Analysis Techniques for Spectral-Analysis-of- Surface-Waves(SASW) Measurements. Ph.D. Dissertation, The Unversity of Texas at Austin.
  4. Kausel, E. and Peek, R. (1982) Dynamic loads in the interior of a layered stratum: An explicit solution. Bull. Seismol.. Soc. Am. Vol. 75, No. 5, pp. 1459-1508.
  5. Kausel, E. and Roesset, J. M. (1981) Stiffness matrices for layered soils. Bull. Seismol. Soc. Am. Vol. 71, pp. 1743-1761.
  6. Sansalone M. J. and Streett, W.B. (1997). IMPACT-ECHO: Nondestructive Evaluation of Concrete and Masonry. Bullbrier Press, 339p.
  7. Stokoe, K.H., II, Wright, S.G., Bay, J.A., and Roesset (1995). Characterization of geotechnical sites by SASW method. Geophysical Characteristics of Sites, ISSMFE, Technical Committee 10 for XIII ICSMFE, International Science Publishers, New York, 1994, pp. 15-25.
  8. Thomson, W.T. (1950) Transmission of elastic waves through a stratified soil medium. J. of Appl. Phys. Vol. 21, pp. 89-93.7. https://doi.org/10.1063/1.1699629