DOI QR코드

DOI QR Code

Suspension of Sediment over Swash Zone

Swash대역에서의 해빈표사 부유거동에 관한 연구

  • 조용준 (서울시립대학교 토목공학과) ;
  • 김권수 (서울시립대학교 대학원 토목공학과) ;
  • 유하상 (서울시립대학교 대학원 토목공학과)
  • Received : 2007.08.07
  • Accepted : 2007.11.07
  • Published : 2008.01.31

Abstract

We numerically analyzed the nonlinear shoaling, a plunging breaker and its accompanying energetic suspension of sediment at a bed, and a redistribution of suspended sediments by a down rush of preceding waves and the following plunger using SPH with a Gaussian kernel function, Lagrangian Dynamic Smagorinsky model (LDS), Van Rijn's pick up function. In that process, we came to the conclusion that the conventional model for the tractive force at a bottom like a quadratic law can not accurately describe the rapidly accelerating flow over a swash zone, and propose new methodology to accurately estimate the bottom tractive force. Using newly proposed wave model in this study, we can successfully duplicate severely deformed water surface profile, free falling water particles, a queuing splash after the landing of water particles on the free surface and a wave finger due to the structured vortex on a rear side of wave crest (Narayanaswamy and Dalrymple, 2002), a circulation of suspended sediments over a swash zone, net transfer of sediments clouds suspended over a swash zone toward the offshore, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

본 연구에서는 LDS 난류응력 모형, Van Rijn의 pick up 함수를 활용하여 일정 경사부에서의 파랑의 이행과 천수, 연이은 쇄파현상, plunging breaker에 후행하는 해저질의 역동적인 부유와 down rush와 후행 파랑에 의한 표사의 재분배를 수치모의 하였다. 이 과정에서 해저질과 소통하는 저면 유체력에 대한 quadratic law를 중심으로 한 기존의 연구 성과들은 정상상태에 기초하여 급속히 가속되고 감속되는 swash 대역의 수리특성을 반영할 수 없다는 결론에 도달하고 이러한 인식에 기초하여 새로운 산출방법이 제시되었다. 새로운 산출방법을 토대로 수치모의하여 비선형 천수과정의 일반적인 특징, 동조 비동조 고차 조화성분으로 전이된 파랑에너지로 인해 상당히 예리하고 왜도된 파형, 파형의 마루로부터 시작되는 물입자 자유낙하, 착수로 인한 커다란 물보라의 형성, 물보라 형성층의 해변으로의 이행, wave finger (Narayanaswamy와 Dalrymple, 2002), swash 대역에서 진행되는 부유사 순환과정, swash 대역에서 처오름으로 인해 부유된 부유사 무리의 off shore 방향으로의 순 이동 등이 비교적 정확히 재현되는 등 상당히 고무적인 결과를 얻을 수 있었다. 이러한 결과는 기존의 Euler 좌표계에서 정의되는 파랑모형과 이동경계 기법의 한계를 뛰어 넘는 것으로 향후 보다 정확한 침식해석이 가능 할 것으로 판단된다.

Keywords

References

  1. 조용준, 이 헌(2007) Lagrangian Dynamic Smagorinsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형천수거동에 관한 연구, 한국해안해양공학회지, 한국해안해양공학회, 제19권, 제1호, pp. 81-96
  2. Batchelor, G.K. (1967) An Introduction to fluid dynamics, Cambridge Univ. Press, Cambridge, UK
  3. Bruun, P. (1962) Sea level rise as a cause of shore erosion, J. Waterway, Port, Coastal and Ocean Eng., ASCE, 88, p. 117
  4. Cowen, E.A., Sou, I.M., Liu, P.L., and Raubenheimer, B. (2003) Particle image velocimetry measurements within a laboratorygenerated swash zone, J. Engineering Mechanics, ASCE, Vol. 129, No. 10, pp. 1119-1129 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:10(1119)
  5. Dalrymple, R.A. and Rogers, B.D. (2006) Numerical modeling of water waves with the SPH method, Coastal Engineering, Vol. 53, pp. 141-147 https://doi.org/10.1016/j.coastaleng.2005.10.004
  6. Dean, R.G. and Dalrymple, R.A. (1991) Water wave mechanics for engineers and scientists, World Scientific
  7. Dean, R.G. and Dalrymple, R.A. (2002) Coastal Processes with engineering applications, Cambridge Univ. Press, Cambridge, UK
  8. Elgar, S., Gallagher, E.L., and Guza R.T. (2001) Nearshore sandbar migration, Journal of Geophysical Research, Vol. 106, No, 11, pp. 623-627
  9. Engelund, F. and Hansen, E. (1972) A monograph on sediment transport in alluvial streams, Teknisk Forlag, Copenhagen
  10. Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids, A3, pp. 1760-1765
  11. Gingold, A., and Monaghan, J.J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astr. Soc. 181, pp. 375-389 https://doi.org/10.1093/mnras/181.3.375
  12. Jensen, B.L., Sumer, B.M., and Fredsoe, J. (1989) Turbulent oscillatory boundary layers at high Reynolds numbers, J. Fluid Mech., 206, pp. 265-297 https://doi.org/10.1017/S0022112089002302
  13. Jonsson, I.G., (1966) Wave boundary layers and friction factors, Proc. of 10th ICCE, ASCE, pp. 127-148
  14. Kamphuis, J.W. (1975) Friction factors under oscillatory waves, J. Waterway, Port, Coastal and Ocean Eng., ASCE, 101, pp. 135-144
  15. Kolmogorov, A.N. (1942) The equations of turbulent motion in an incompressible fluid, Izvestia Acad. Sci., USSR; Phys., 6, pp. 56-58
  16. Komar, P.D. (1976) Beach processes and sedimentation, Prentice Hall
  17. Longuet-Higgins, M.S. (1983) Wave setup, percolation and undertow in the surf zone, Proc Roy Soc Lond, Vol. A 390, pp. 283-291
  18. Madsen, O.S. and Grant, W.D. (1976) Sediment transport in the coastal environment, Report No 209, Palph M Parsons Lab, M. I. T
  19. Meneveau, C., Lund, T.S., Cabot, W.H. (1996) A Lagrangian dynamic subgrid-scale model of turbulence, Journal of Fluid Mech., 319, pp. 353-385 https://doi.org/10.1017/S0022112096007379
  20. Monaghan J.J. (1994) Simulating free surface flows with SPH, Journal of Computational Physics 110, pp. 399-406 https://doi.org/10.1006/jcph.1994.1034
  21. Nadaoka, K. (1986) A fundamental study on shoaling and velocity field structure of water waves in near the nearshore zone, Ph. D. dissertation, Tokyo Inst. Technology, Tech. Rpt. Dept. Civil Engineering No. 35, pp. 36-125
  22. Nadaoka, K., Hino, M., and Koyano, Y. (1989) Structure of the turbulent flow field under breaking waves in the surf zone, J. Fluid mech. 204, pp. 359-387 https://doi.org/10.1017/S0022112089001783
  23. Nadaoka, K., Ueno, S., and Igarashi, T. (1988). Sediment suspension due to large eddies in the surf zone, Proc. of 22nd ICCE, ASCE, pp. 1646-1660
  24. Narayanaswamy, M. and Dalrymple, R.A. (2002) An experimental study of surface instabilities during wave breaking, Proc. of 28th ICCE, ASCE, pp. 344-355
  25. Nielsen, P. (1979) Some basic concepts of wave sediment transport, Ser. Paper 20, Inst Hydrodyn Hydraul Eng, Tech Univ. Denmark
  26. Nielsen, P. (1992) Coastal bottom boundary layers and sediment transport, World Scientific
  27. Peregrine, D.H. and Svendsen, I.A. (1978) Spilling breakers, bores and hydraulic jumps, Proc. of 16th ICCE, ASCE, pp. 540-550
  28. Pope, Stephen B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New Journal of Physics, Vol. 6, No. 35, pp. 1-24 https://doi.org/10.1088/1367-2630/6/1/001
  29. Rodi, Wolfgang, (1993) Turbulence models and their application in hydraulics - a state of art review, International Association for Hydraulic Research, Delft, 3rd edition 1993, Balkema
  30. Shields, A. (1936) Anwendung der Aehnlichkeitsmechanik und Turbulenzforchung auf die Geschiebebewegung. Mitt Preuss Versuchsanstalt fur Wasserbau und Schiffbau, No 26, Berlin
  31. Sleath, J.F.A. (1987) Turbulent oscillatory flow over rough beds, J Fluid Mech, Vol. 182, pp. 369-409 https://doi.org/10.1017/S0022112087002374
  32. Smagorincky, J. (1963) General circulation experiments with primitive equations, I. the Basic Experiment, Monthly Weather Review, Vol. 91, pp. 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  33. Swart, D.H. (1974) Offshore sediment transport and equilibrium beach profiles, Delft Hydr Lab Publ No. 131
  34. van Rijn, L.C. (1986) Applications of sediment pickup function, J. Hydraulic Eng., ASCE, Vol. 112, No. 9, pp. 867-874 https://doi.org/10.1061/(ASCE)0733-9429(1986)112:9(867)
  35. Veeramony, J. and Svendsen, I.A. (1999) Modeling the flow in surf zone waves, Research Report NO. CACR-99-04, Center for applied coastal research, Univ. of Delaware, Newark, Delaware
  36. Yoshizawa, A. (1986) Statistical theory for compressible turbulent shear flows with application to sub-grid modeling, Physics of Fluids A 29, pp. 2152-2164 https://doi.org/10.1063/1.865552
  37. Zou, S., Dalrymple, R.A., and Rogers, B.D. (2005) Smoothed particle hydrodynamics simulation on sediment suspension under breaking waves, Ocean Waves Measurement and Analysis, Proc. of 5th Int. Symposium WAVES 2005, No 186, Madrid, Spain