DOI QR코드

DOI QR Code

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis

실내모형시험과 수치해석을 통한 SVE의 효율성 평가

  • 석희준 (한국지질자원연구원 지하수지열연구부 지하수환경연구실) ;
  • 서민우 ;
  • 고경석 (한국지질자원연구원 지하수지열연구부 지하수환경연구실)
  • Received : 2007.07.30
  • Accepted : 2007.12.04
  • Published : 2008.01.31

Abstract

Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

SVE 공법은 휘발성 유기물로 오염된 불포화대의 정화 공법으로 널리 적용되어 왔다. 본 연구에서는 SVE 적용시 오염물 제거 기작을 관찰하기 위해 모형조 시험을 수행하였으며, 이로부터 SVE의 주요 특징인 tailing 현상, 즉 후반부로 갈수록 제거 속도가 급격히 느려지는 꼬리 효과를 확인하였다. 본 연구에서는 액상 막에서의 확산 제약 현상을 고려할 수 있는 수치 모델을 적용하였으며, 모형조 시험 결과와 구축된 수치 모델링을 통해 SVE의 전형적인 특징이 꼬리 현상을 적절하게 모사할 수 있었다. 또한 4가지 변수에 대한 민감도 분석을 수행하여, 총토양농도의 백분율은 액상확산계수가 클수록, 가스상 확산계수가 클수록, 실제확산경로가 짧을수록, 물포화도가 작을수록 빠르게 감소함을 확인하였다.

Keywords

References

  1. 김재덕, 김영래, 황경엽, 이성철(2000) 토양증기추출법에 의한 휘발유 오염토양의 현장 복원 연구. 한국토양환경학회지, 한국토양환경학회, Vol. 5, No. 1, pp. 13-23
  2. 김학윤, 오재일(2004) SVE(Soil Vapor Extraction)를 이용한 토양내 TCE 정화 실험. 대한환경공학회 춘계학술발표회 논문집, 대한환경공학회, pp. 1309-1311
  3. 박준범, 하태균(2005) 토양증기추추법(Soil Vapor Extraction) 적용성 평가 및 설계. 지반, 한국지반공학회, Vol. 21, No. 4, pp. 37-46
  4. 박준석, 김승호, 박영구(2003) 온라인 모니터링에 의한 디젤 오염토양의 토양증기추출 공정시 추출모드 평가. 폐기물자원학회지, 한국폐기물자원학회, 제11권, 제4호, pp. 90-96
  5. 이병환, 이현주, 주창업, 이종협(1999) 인공토양으로부터 증기추출법에 의한 유기화합물의 탈착 현상에 관한 연구. 한국화학공학지, 한국화학공학회, Vol. 37, No. 1, pp. 87-96
  6. Arocha, M.A., Jackman, A.P., and McCoy, B.J. (1996) Adsorption Kinetics of Toluene on Soil Agglomerates: Soil as a Biporous Sorbent. Environmental Science and Technology, Vol. 30, No. 5, pp. 1500-1507 https://doi.org/10.1021/es9504294
  7. Baehr, A.L., Hoag, G.E., and Marley, M.C. (1989) Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport. Journal of Contaminant Hydrology, Vol. 4, pp. 1-26 https://doi.org/10.1016/0169-7722(89)90023-5
  8. Carslaw, H.S. and Jaeger, J.C. (1959) Conduction of Heat in Solids. Oxford University Press Inc., New York
  9. Chen, J.S., Liang, C.P., Chen, C.Y., and Liu, C.W. (2007) Composite analytical solutions for a soil vapour extraction system. Hydrological Process, Vol. 21, pp. 1506-1516 https://doi.org/10.1002/hyp.6341
  10. EPA (2001) Development of recommendations and methods to support assessment of soil venting performance and closure, EPA/600/R-01/070, September 2001
  11. Farrell, J. and Reinhard, M. (1994) Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 2. Kinetics. Environmental Science and Technology, Vol. 28, No. 1, pp. 63-72 https://doi.org/10.1021/es00050a010
  12. Fischer, U., Schulin, R., Keller, M., and Stauffer, F. (1996) Experimental and numerical investigation of soil vapor extraction. Water Resources Research, Vol. 32, No. 12, pp. 3413-3427 https://doi.org/10.1029/95WR02668
  13. Gierke, J.S., Hutzler, N.J., and McKenzie, D.B. (1992) Vapor transport in unsaturated soil columns: implications for vapor extraction. Water Resources Research, Vol. 28, No. 2, pp. 323-335 https://doi.org/10.1029/91WR02661
  14. Grathwohl, P. and Reinhard, M. (1993) Desorption of trichloroethylene in aquifer material: Rate limitation at the grain scale. Environmental Science and Technology, Vol. 27, No. 2, pp. 2360-2366 https://doi.org/10.1021/es00048a008
  15. Hoeg, S., Schler, H.F., and Warnatz, J. (2004) Assessment of interfacial mass transfer in water-unsaturated soils during vapor extraction. Journal of Contaminant Hydrology, Vol. 74, pp. 163-195 https://doi.org/10.1016/j.jconhyd.2004.02.010
  16. Huang, J. and Goltz, M.N. (1999) Solutions to equations incorporating the effect of rate-limited contaminant mass transfer on vadose zone remediation by soil vapor extraction. Water Resources Research, Vol. 35, No. 3, pp. 879-883 https://doi.org/10.1029/1998WR900113
  17. Lingineni, S. and Dhir, V.K. (1992) Modeling of soil venting processes to remediate unsaturated soils. Journal of Environmental Engineering, Vol. 118, No. 1, pp. 135-152 https://doi.org/10.1061/(ASCE)0733-9372(1992)118:1(135)
  18. McClellan, R.D. and Gillham, R.W. (1992) Vapor extraction of trichloroethylene under controlled field conditions. Conference on Subsurface Contamination by Immiscible Liquids, International Association of Hydrogeologists, Calgary, Alberta, Canada, April
  19. Travis, C.C. and Macinnis, J.M. (1992) Vapor extraction of organics from subsurface soils, is it effective ?. Evironmental Science and Technology, Vol. 26, No. 10, pp. 1885-1887. US EPA (2001) https://doi.org/10.1021/es00034a003
  20. US EPA Annual Report, EPA-542-R-01-004
  21. Wehrle, K. and Brauns, J. (1994) Column experiments concerning rate limited vapor extraction of volatile organic compound from wet sands. Transport and Reactive Processes in Aquifers, IAHR/AIRH Proc., Vol. 4, Edited by T. Dracos and F. Stauffer, A. A. Balkema, pp. 549-554
  22. Yang, Y.J, Gates, T.M., and Edwards, S. (1999) SVE design : mass transfer limitation due to molecular diffusion. Journal of environmental engineering, Vol. 125, No. 9, pp. 852-860 https://doi.org/10.1061/(ASCE)0733-9372(1999)125:9(852)
  23. Yoon, H., Kim, J.H., Liljestrand, H.M., and Khim, J. (2002) Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction. Journal of Contaminant Hydrology, Vol. 54, pp. 1-18 https://doi.org/10.1016/S0169-7722(01)00164-4