DOI QR코드

DOI QR Code

Hysteretic Damage Model for Reinforced Concrete Joints Considering Bond-Slip

부착-슬립을 고려한 철근콘크리트 접합부의 이력 손상 모델 개발

  • 김도연 (한국원자력연구원 종합안전평가부) ;
  • 최인길 (한국원자력연구원 종합안전평가부)
  • Received : 2008.04.03
  • Accepted : 2008.06.01
  • Published : 2008.07.31

Abstract

This paper presents a hysteretic damage model for reinforced concrete (RC) joints that explicitly accounts for the bond-slip between the reinforcing bars and the surrounding concrete. A frame element whose displacement fields for the concrete and the reinforcing bars are different to permit slip is developed. From the fiber section concept, compatibility equations for concrete, rebar, and bond are defined. Modification of the hysteretic stress-strain curve of steel is conducted for partial unloading and reloading conditions. Local bond stress-slip relations for monotonic loads are updated at each slip reversal according to the damage factor. The numerical applications of the reinforcing bar embedded in the confined concrete block, the RC column anchored in the foundation, and the RC beam-column subassemblage validate the model accuracy and show how including the effects of bond-slip leads to a good assessment of the amount of energy dissipation during loading histories.

이 논문에서는 철근과 콘크리트 사이의 부착-슬립을 실제적으로 고려한 철근콘크리트 접합부의 이력 손상 모델을 제안하였다. 슬립을 가시화하기 위해 콘크리트와 철근의 변위장이 서로 다른 프레임 요소를 개발하였다. 파이버 단면 개념으로부터 콘크리트, 철근 그리고 부착에 대한 적합방정식을 정의하였다. 부분적인 제하 및 재재하 상태를 고려하기 위해 철근 이력곡선의 수정이 이루어졌다. 단조증가 상태의 국부적 부착응력-슬립 관계는 손상 계수에 따라 슬립이 역전될 때마다 갱신하였다. 구속된 콘크리트에 매입된 철근 시험체와 기초에 정착된 철근콘크리트 기둥 시험체, 그리고 보-기둥 부재의 수치해석을 통해 모델의 정확성을 검증하였고, 부착-슬립 효과를 고려함으로써 하중 이력에 따른 에너지 소산 정도를 평가할 수 있었다.

Keywords

References

  1. 한국콘크리트학회 (2003) 콘크리트 구조설계기준 해설
  2. ACI Committee 318 (2005) Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Farmington Hills, MI
  3. Ayoub, A. (2006) Nonlinear analysis of reinforced concrete beamcolumns with bond-slip. Journal of Engineering Mechanics, ASCE, Vol. 132, No. 11, pp. 1177-1186 https://doi.org/10.1061/(ASCE)0733-9399(2006)132:11(1177)
  4. CEB (1993) CEB-FIP Model Code 1990. Thomas Telford Service Ltd., London
  5. CEB (1996) RC frames under earthquake loading: state of the art report. Thomas Telford Services Ltd., London
  6. Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. (2002) Concepts and applications of finite element analysis. John Wiley & Sons. Inc., New York, NY
  7. Eligehausen, R., Popov, E. P., and Bertero, V. V. (1983) Local bond stress-slip relationships of deformed bars under generalized excitations. Report No. UCB/EERC-83/23, University of California, Berkeley, California
  8. fib (2000) Bond of reinforcement in concrete. Bulletin No. 10, Federal Institute of Technology Lausanne, Lausanne, Swiss
  9. Harajli, M. H., Hamad, B. S., and Rteil, A. A. (2004) Effect of confinement on bond strength between steel bars and concrete. ACI Structural Journal, Vol. 101, No. 5, pp. 595-603
  10. Hughes, T. J. R., Taylor, R. L., and Kanoknukulchai, S. (1977) A simple and efficient finite element for plate bending. International Journal for Numerical Methods in Engineering, Vol. 11, No. 10, pp. 1529-1543 https://doi.org/10.1002/nme.1620111005
  11. Kappos, A. J. (1991) Analytical prediction of the collapse earthquake for R/C buildings: suggested methodology. Earthquake Engineering and Structural Dynamics, Vol. 20, No. 2, pp. 167-176 https://doi.org/10.1002/eqe.4290200206
  12. Kim, D. Y. (2004) Cracking and hysteretic behavior of reinforced concrete shear walls. Ph.D. Dissertation, Korea Advanced Institute of Science and Technology
  13. Low, S. S. and Moehle, J. P. (1987) Experimental study of reinforced concrete columns subjected to multi-axial cyclic loading. Report No. UCB/EERC-87/14, University of California, Berkeley, California
  14. Lowes, L. N. and Altoontash, A. (2003) Modeling reinforced-concrete beam-column joints subjected to cyclic loading. Journal of Structural Engineering, ASCE, Vol. 129, No. 12, pp. 1686-1697 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1686)
  15. Maekawa, K., Pimanmas, A., and Okamura, H. (2003) Nonlinear mechanics of reinforced concrete. Spon Press, London
  16. Menegotto, M. and Pinto, P. E. (1973) Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and nonelastic behavior of elements under combined normal force and bending. Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon, Spain
  17. Naito, C. J., Moehle, J. P., and Mosalam, K. M. (2001) Experimental and computational evaluation of reinforced concrete bridge beam-column connections for seismic performance. Report No. PEER 2001/08, Univ. of California, Berkeley, California
  18. Soleimani, D., Popov, E. P., and Bertero, V. V. (1979) Hysteretic behavior of reinforced concrete beam-column subassemblages. ACI Journal Proceedings, Vol. 76, No. 11, pp. 1179-1195
  19. Soroushian, P., Choi, K. B., Park, G. H., and Aslani, F. (1991) Bond of deformed bars to concrete: effects of confinement and strength of concrete. ACI Material Journal, Vol. 88, No. 3, pp. 227-232
  20. Soroushian, P., Obaseki, K., Nagi, M., and Rojas M. C. (1988) Pullout behavior of hooked bars in exterior beam-column connections. ACI Structural Journal, Vol. 85, No. 3, pp. 269-276
  21. Viwathanatepa, S., Popov, E. P., and Bertero, V. V. (1979) Effects of generalized loadings on bond of reinforcing bars embedded in confined concrete blocks. Report No. UCB/EERC-79/22, University of California, Berkeley, California