DOI QR코드

DOI QR Code

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics

구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용

  • 김근휘 (연세대학교 대학원 토목공학과) ;
  • 임지훈 ((주)브이테크) ;
  • 임윤묵 (연세대학교 공과대학 토목공학과)
  • Received : 2008.04.14
  • Accepted : 2008.05.08
  • Published : 2008.07.31

Abstract

The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

구조물의 파괴 거동은 하중의 재하 속도에 따라 달라지는 특성을 보이는데, 이는 재료의 속도 의존성으로부터 비롯된다고 할 수 있다. 이러한 현상은 공학의 여러 분야에서 관심사였지만, 파괴 메커니즘이 명확히 규명되지 않았기 때문에 수치 해석을 통한 연구에는 그 한계점과 어려움이 상존하였다. 본 연구에서는 파괴 거동의 속도 의존성을 이해하고자, 취성재료를 대상으로 입자동역학을 이용한 수치해석을 수행하였다. 직접 인장 시험 시뮬레이션을 위해 노치가 있는 시편을 모델링하고, 취성재료가 갖는 특성을 표현하기 위해 Lennard-Jones 포텐셜을 사용하였다. 6가지의 다른 하중 속도에 따른 균열의 거칠기, 균열의 후퇴와 멈춤, 분기 현상과 같은 동적 파괴 특성을 관찰하였다. 해석 결과를 통해 하중 속도에 따른 파괴 거동의 변화 원인을 에너지 유입-소모율의 개념을 도입하여 설명하고, 재료의 파괴 메커니즘이 갖는 속도 의존성에 대해 이해할 수 있는 단초를 마련하였다. 또한, 기존 실험과의 비교를 통해 실제적인 현상과의 유사성을 밝힘으로써 입자동역학의 공학적 적용 가능성을 제시하였다.

Keywords

References

  1. Anderson, T.L. (1995) Fracture Mechanics 3rd edition, CRC Press, Inc., Florida
  2. Bergkvist, H. (1974) Some experiments on crack motion and arrest in polymethyl-methacrylate, Engineering Fracture Mechanics, Vol. 6, pp. 621-626 https://doi.org/10.1016/0013-7944(74)90060-5
  3. Broberg, K.B. (1979) On the behaviour of the process region at a fast running crack tip, Springer
  4. Cho, S.H., Ogata, Y., and Kaneko, K. (2003) Strain-rate dependency of the dynamic tensile strength of rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 40, pp. 763-777 https://doi.org/10.1016/S1365-1609(03)00072-8
  5. Eshelby, J.D. (1971) Fracture mechanics, Science Progress, Vol. 59, No. 234, pp. 161-179
  6. Fineberg, J. and Marder, M. (1999) Instability in dynamic fracture, Physics Reports, Vol. 313, pp. 1-108
  7. Gumbsch, P., Zhou, S.J., and Holian, B.L. (1997) Molecular dynamics investigation of dynamic crack stability, Physical Review B, Vol. 55, No. 6, pp. 3445-3455 https://doi.org/10.1103/PhysRevB.55.3445
  8. John, R. and Shah, S. (1990) Mixed-mode fracture of concrete subjected to impact loading, Journal of Structural Engineering, Vol. 116, No. 3, pp. 585-602 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(585)
  9. Kobayashi, A., Ohtani, N., and Sato, T. (1974) Phenomenological aspects of viscoelastic crack propagation, Journal of Applied Polymer Science, Vol. 18, pp. 1625-1638 https://doi.org/10.1002/app.1974.070180605
  10. Krivtsov, A.M. (2003) Molecular dynamics simulation of impact fracture in polycrystalline materials, Meccanica, Vol. 38, pp. 61-70 https://doi.org/10.1023/A:1022019401291
  11. Ravi-Chandar, K. and Knauss, W.G. (1984a) An experimental investigation into dynamic fracture: I. Crack initiation and arrest, International Journal of Fracture, Vol. 25, pp. 247-262 https://doi.org/10.1007/BF00963460
  12. Ravi-Chandar, K. and Knauss, W.G. (1984b) An experimental investigation into dynamic fracture: II. Microstructural aspects, International Journal of Fracture, Vol. 26, pp. 65-80 https://doi.org/10.1007/BF01152313
  13. Ravi-Chandar, K. and Knauss, W.G. (1984c) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching, International Journal of Fracture, Vol. 26, pp. 141-154 https://doi.org/10.1007/BF01157550
  14. Ravi-Chandar, K. and Knauss, W.G. (1984d) An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks, International Journal of Fracture, Vol. 26, pp. 189-200 https://doi.org/10.1007/BF01140627
  15. Rodger, P.M. (1989) On the accuracy of some common molecular dynamics algorithms, Molecular Simulation, Vol. 3, No. 5-6, pp. 263-269 https://doi.org/10.1080/08927028908031379
  16. Wagner, N.J., Holian, B.L., and Voter, A.F. (1992) Moleculardynamics simulation of two-dimensional materials at high strain rates, Physical Review A, Vol. 45, No. 12, pp. 8457-8470 https://doi.org/10.1103/PhysRevA.45.8457
  17. Zhou, S.J., Lomdahl, P.S., Thomson, R., and Holian, B.L. (1996) Dynamic crack processes via molecular dynamics, Physical Review Letters, Vol. 76, No. 13, pp. 2318-2321 https://doi.org/10.1103/PhysRevLett.76.2318