DOI QR코드

DOI QR Code

Influence of the Filler's Particle Size on the Mechanical Properties of Ultra High Performance Concrete(UHPC)

충전재의 입경 크기가 초고성능 콘크리트의 역학적 특성에 미치는 영향

  • 강수태 (한국건설기술연구원 구조재료연구실) ;
  • 박정준 (한국건설기술연구원 구조재료연구실) ;
  • 류금성 (한국건설기술연구원 구조재료연구실) ;
  • 김성욱 (한국건설기술연구원 구조재료연구실)
  • Received : 2008.02.25
  • Accepted : 2008.06.27
  • Published : 2008.07.31

Abstract

In this paper, we estimated the effect of the siliceous filler's particle size on the performance of Ultra High Performance Concrete (UHPC). Filler's particle diameters considered in this paper were about 2, 4, 8, 14, $26{\mu}m$ and the performance was evaluated by testing fluidity in fresh concrete, compressive strength, ultimate strain, elastic modulus and flexural strength in hardened concrete. We also carried out XRD and MIP tests to analyze the relationship between the mechanical properties and microstructure. Test results showed that the smaller filler's particle size improves flowability and strength properties. MIP results revealed that the smaller size of filler decreased the porosity and thus increased the strength of UHPC. From XRD analysis, we could find out there were little influence of filler's particle size on chemical reactivity in UHPC.

본 연구에서는 초고성능 콘크리트(Ultra High Performance Concrete, UHPC)에서 석영질 충전재의 입자크기가 콘크리트 성능에 미치는 영향을 평가하였다. 본 연구에서 고려한 충전재의 입경은 각각 2, 4, 8, 14, $26{\mu}m$이며, 평가항목으로는 굳지 않은 상태에서의 유동성과 압축강도, 극한변형률, 탄성계수 및 휨강도를 평가하였다. 또한 UHPC의 역학적 특성과 미세구조의 관계를 규명하기 위해 XRD, MIP 시험을 수행하였다. 실험을 통해 충전재의 입자크기가 작을수록 유동성 및 강도특성이 향상됨을 알 수 있었다. MIP 분석을 통해 충전재 입자크기가 작을수록 공극률이 감소하고, 따라서 UHPC의 강도가 증가함을 알 수 있었다. 그리고 XRD 분석을 통해 UHPC에서 충전재 입자크기에 따른 화학적 반응의 변화는 거의 없는 것으로 나타났다.

Keywords

References

  1. 고경택 등(2005) 콘크리트 교량의 내구성 향상 기술 개발, 연구보고서, 건기연 2005-082, 한국건설기술연구원
  2. Cheyrezy, M., Maret, V., and Frouin, L. (1995) Microstructural analysis of RPC (Reactive Powder Concrete), Cement and Concrete Research, Vol. 25, No. 7, pp. 1491-1500 https://doi.org/10.1016/0008-8846(95)00143-Z
  3. De Larrard, F. and Sedran, Th. (1994) Optimization of ultra-high performance concrete by the use of a packing model, Cement and Concrete Research, Vol. 24, No. 6, pp. 997-1008 https://doi.org/10.1016/0008-8846(94)90022-1
  4. Droll, K. (2004) Influence of additions on ultra high performance concrete-grain size optimization, Proceedings of the International Symposium on Ultra High Performance Concrete, pp. 285-301
  5. Goldman, A. and Bentur, A. (1993) The influence of micro-fillers on enhancement of concrete strength, Cement and Concrete Research, Vol. 23, pp. 962-972 https://doi.org/10.1016/0008-8846(93)90050-J
  6. Mehta, P.K. and Monteiro, P.J.M. (2006) Concrete microstructure, properties, and materials, McGrwaw-Hill, New York, USA
  7. Menzel, C.A. (1934) Strength and volume change of steam-cured portland cement mortar and concrete, Journal of ACI Proceedings, Vol. 31, pp. 125-148
  8. Nehdi, M. (2005) Microfiller effect on rheology, microstructure, and mechanical properties of high-performance concrete, Ph. D. Thesis, University of British Columbia, Canada
  9. Odler, I., Yudenfreund, M., Skalny, J., and Brunauer, S. (1972c) Hardened portland cement pastes of low porosity III. degree of hydration. expansion of paste. Total porosity, Cement and Concrete Research, Vol. 2, No. 3, pp. 463-480 https://doi.org/10.1016/0008-8846(72)90060-9
  10. Poppe, A.M. and De Schutter, G. (2006) Analytical hydration model for filler rich binders in self-compacting concrete, Journal of Advanced Concrete Technology, Vol. 4, No. 2, pp. 259-266 https://doi.org/10.3151/jact.4.259
  11. Richard, P. and Cheyrezy, M. (1995) Composition of reactive powder concretes, Cement and Concrete Research, Vol. 25, No. 7, pp. 1501-1511 https://doi.org/10.1016/0008-8846(95)00144-2
  12. Sersale, R., Cioffi, R., Frigione, G., and Zenone, F. (1991) Relationship between gypsume content, porosity, and strength of cement, Cement and Concrete Research, Vol. 21, No. 1, pp. 120-126 https://doi.org/10.1016/0008-8846(91)90038-J
  13. Yudenfreund, M., Odler, I., and Brunauer, S. (1972a) Hardened portland cement pastes of low porosity I. materials and experimental methods, Cement and Concrete Research, Vol. 2, No. 3, pp. 313-330 https://doi.org/10.1016/0008-8846(72)90073-7
  14. Yudenfreund, M., Skalny, J., Mikhail, R.S., and Brunauer, S. (1972b) Hardened portland cement pastes of low porosity II. exploratory studies. dimensional changes, Cement and Concrete Research, Vol. 2, No. 3, pp. 331-348 https://doi.org/10.1016/0008-8846(72)90074-9
  15. Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., and Nieto, P. (1996) Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using $^{29}Si$ NMR, Cement and Concrete Research, Vol. 26, No. 1, pp. 93-100 https://doi.org/10.1016/0008-8846(95)00197-2
  16. Zhu, W. and Gibbs, J.C. (2005) Use of different limestone and chalk powders in self-compacting concrete, Cement and Concrete Research, Vol. 35, pp. 1457-1462 https://doi.org/10.1016/j.cemconres.2004.07.001