수소 생산을 위한 물 전기분해 이해 및 기술동향

Understanding Underlying Processes of Water Electrolysis

  • 이재영 (광주과학기술원 환경공학과 Ertl 연구실) ;
  • 이영미 (광주과학기술원 환경공학과 Ertl 연구실) ;
  • 엄성현 (광주과학기술원 환경공학과 Ertl 연구실)
  • Lee, Jaeyoung (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Yi, Youngmi (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Uhm, Sunghyun (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 투고 : 2008.07.17
  • 발행 : 2008.08.10

초록

현재 수소에너지는 화석연료의 고갈과 환경문제를 동시에 해결할 수 있는 가능성 있는 자원으로 그 중요성은 점점 커지고 있으며 지금까지 비 화석연료로부터 수소를 생산하는 방법 중에서 관심을 받는 기술은 물 전기분해이다. 물 전기분해는 전기에너지를 이용하여 무한정한 원료인 물로부터 고순도의 수소와 산소를 생산할 수 있는 친환경적인 방법이다. 본 총설에서는 물 전기화학반응의 기본원리와 종류, 최근 국내외 기술 개발현황과 발전가능성에 대해서 기술하고자 한다.

Hydrogen energy becomes more attractive in that it can resolve the exhaustion of fossil fuels and their environmental problems. Until now, water electrolysis has been a interesting technique to produce hydrogen from non-fossil fuels. In principle, water electrolysis is an environmentally friendly technique to split water into hydrogen and oxygen, so that it can be utilized without any limitation of resources. Herein, we introduce basic understanding and three types of water electrolysis. Furthermore, the research trend and patent analysis will be followed along with an outlook.

키워드

참고문헌

  1. H. Wendt and G. Kreysa, Electrochemical Engineering, Springer, Berlin (1999)
  2. D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Kluwer, London (1992)
  3. B. Sorensen, Hydrogen and Fuel Cells, Elsevier Academic Press, Heidelberg (2005)
  4. J. P. Paul and C.-M. Paradier, Carbon Dioxide Chemistry: Environmental Issues, The Royal Society of Chemistry, Cambridge (1994)
  5. M. A. Peavey, Fuel from water, Merit. Inc., Louisville (2003)
  6. J. Ivy, NREL Milestone Report (NREL/MP-560-36734): Summary of Electrolytic Hydrogen Production, US DOE (2004)
  7. J. Lee and S. W. Nam. Prospectives of Industrial Chemistry, 9, 1 (2006)
  8. K. Sim, S. Moon, and S.-T. Choo, Hydrogen Information, No. 4, 1 (2004)
  9. L. A. Kibler, ChemPhysChem, 7, 985 (2006) https://doi.org/10.1002/cphc.200500646
  10. S. Trasatti, J. Electroanal. Chem., 39, 163 (1972) https://doi.org/10.1016/S0022-0728(72)80485-6
  11. B. Kroposki, Electrolysis : Information and Opportunities for Electric power Utilities, NREL Technical Report (2006)
  12. Technical and energy economic specifications, US. DOE (2002)
  13. T. E. Lipman and C. Brooks, Hydrogen energy stations : poly-production of electricity, Hydrogen, and thermal energy, Clean energy group (2006)
  14. Stuart Energy 사 (http://www.stuartenergy.com)
  15. Proton Energy Systems (http://www.protonenergy.com)
  16. Norsk hydro 사 (http://www.hydro.com)
  17. Teledyne Energy Systems (http://www.teledynees.com)
  18. P. A. Lessing, J. Mater. Sci., 42, 3477 (2007) https://doi.org/10.1007/s10853-006-0398-8
  19. G. Mulder, J. Hetland, and G. Lenaers, Int. J. Hydrog. Energy, 32, 1324 (2007) https://doi.org/10.1016/j.ijhydene.2006.10.012
  20. M. Jafarian, O. Azizi, F. Gobal, and M. G. Mahjani, Int. J. Hydrog. Energy, 32, 1686 (2007) https://doi.org/10.1016/j.ijhydene.2006.09.030
  21. R. B. Dopp, Hydrogen generation via water electrolysis using highly efficient nanometal electrodes, Quantum Sphere, Inc. (2007)
  22. I. Papagiannakis, Studying and Improving the Efficiency of Water Electrolysis Using a Proton Exchange Membrane Electrolyser, The Energy Systems Research Unit (ESRU) (2005)
  23. J. Greeley, J. K. Norskov, L. A. Kibler, A. M. El-Aziz, and D. M. Kolb, ChemPhysChem, 7, 1032 (2006) https://doi.org/10.1002/cphc.200500663
  24. J. Greeley and M. Mavrikakis, Nat. Mater., 3, 810 (2004) https://doi.org/10.1038/nmat1223
  25. J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Norskov, Nat. Mater., 5, 909 (2006) https://doi.org/10.1038/nmat1752
  26. Hydrogen Energy R&D Center (http://www.h2.re.kr)
  27. S. Uhm, Y. Yi, H. J. Lee, and J. Lee, Adv. Mater., submitted
  28. W. Peschka, Int. J. Hydrog. Energy, 23, 27 (1998) https://doi.org/10.1016/S0360-3199(97)00015-3
  29. Korea Patent (한국특허) : 0822034, 0776353, 0756518, 0754909, 0736163, 0736161, 0621565, 0567357, 0389368, 0835929, 0684685, 0677668, 0660176, 0654321, 0632181, 0594379, 0493811, 0456295, 0424665, 0424006, 0414880, 0407481, 0406933, 0355311, 0423499, 0417285, 0396698, 0380545, 0366915, 0361830, 0335853, 0313946, 0234692
  30. Japan Patent (일본특허) : 4035313, 4095782, 4000415, 3771146, 3986285, 3839419, 3791477, 3750802, 3733463, 3855121, 3772261, 3723119, 3723116 3717424, 3604620, 3414720, 3307630
  31. U.S. Patent (미국특허) : US7381313, US7351316, US7331179, US7326329, US7261874, US7258779, US7247950, US7241522, US7241522 US7146918, US71408777, US7100542, US7048839, US7005075, US6977120, US6890419, US6841046, US7323089, US6740436, US6630061
  32. EU Patent (유럽특허, EP) : 1570110, 1397583, 1303028, 1240274, 1264008, 1240274
  33. J. Turner, G. Sverdrup, M. K. Mann, P. C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, Int. J. Energy Res., 32, 379 (2008) https://doi.org/10.1002/er.1372
  34. T. M. Maloney, Proton Energy Systems, An Electrolysis-Based Pathway Towards Hydrogen Fueling, IEEE Conference (2005)