볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing

  • 김건호 (강원대학교 산림환경과학대학 임산공학과) ;
  • 홍순일 (강원대학교 산림환경과학대학 임산공학과)
  • Kim, Keon-Ho (Department of Wood Science & Engineering, College of Forest and Enviromental Sciences Kangwon National University) ;
  • Hong, Soon-Il (Department of Wood Science & Engineering, College of Forest and Enviromental Sciences Kangwon National University)
  • 투고 : 2007.10.10
  • 심사 : 2008.01.07
  • 발행 : 2008.05.25

초록

볼트 간격에 따른 국내산 낙엽송 집성재 이중 볼트접합부의 내력성능을 검토하기 위하여 휨 type 전단강도실험을 실시하였다. 전단시편은 강판삽입형 볼트접합부 시편으로서 볼트구멍은 볼트직경(12 mm, 16 mm), 볼트 개수(단일 볼트 : Control, 이중 볼트), 볼트 열 방향(섬유평행 : Type-A, 섬유직교 : Type-B) 그리고 볼트 간격(Type-A : 4 d, 7 d, Type-B : 3 d, 5 d)을 달리하여 제작하였다. 조건에 따른 볼트접합부의 강도성능과 파괴형상을 비교, 검토하였다. 설계표준(KBCS, 2000)시 볼트간격이 감소된 기준허용전단내력에 대한 저감계수를 산출하였다. 본 연구의 결과는 다음과 같다. 1) 단일 볼트접합부와 Type-A의 이중 볼트접합부의 볼트 한 개당 지압응력은 볼트의 직경, 볼트 간격과 비례 관계를 보여주었다. Type-B의 지압응력은 볼트의 직경이 증가할 때 감소하였고, 볼트 간격이 증가할 때 2~10% 정도 감소하였다. 2) 단일 볼트접합부와 Type-A의 이중 볼트접합부의 파괴형상은 연단거리 방향으로 할렬파단이 일어났다. Type-B의 경우 볼트간격이 3 d일 때 인장부위 볼트가 압축부위 볼트보다 더 굴곡되었고 인장부위볼트에서 할렬파단이 시작되었다. 5 d 시편의 경우 인장부위와 압축부위 볼트의 굴곡은 비슷하게 나타났으며, 압축부위볼트에서 할렬파단이 시작되었다. 3) 설계표준시 기준볼트 간격(Type A : 7 d, Type B : 5 d)에 따른 항복하중을 무차원화시켜 저감계수를 산출하였다. 12 mm 볼트접합부의 경우 Type-A인 볼트 간격 4d와 단일 볼트접합부의 저감계수는 각각 0.87, 0.55였고 Type-B인 볼트 간격 3 d와 단일 볼트접합부의 저감계수는 0.91, 0.55였다. 16 mm 볼트접합부의 경우 Type-A인 볼트 간격 4 d와 단일 볼트접합부의 저감계수는 0.96, 0.76이었고 Type-B인 볼트 간격 3 d, 단일 볼트접합부의 저감계수는 0.91, 0.77이었다.

The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.

키워드

참고문헌

  1. American Society of Testing Materials. 2000. ASTM D 5652-95. Standard Test Methods for bolted Connections in Wood and Wood-Based Products.
  2. Doyle, D. V. 1964. Performance of joints with eight bolts in laminated Douglas-fir. Res. Pap. FPL-RP-10. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. p. 31.
  3. Hwang, K. and K. Komatsu. 2003. Shear Strength of Joints Composed of Structural Composite Lumber (SCL) with an Inserted Steel Plate and a Drift Pin. Mokuzai Gakkaishi. 49(4): 275-286.
  4. Komatsu, K. and K. Hwang. 1998. Effects of End-Distance and Edge-Distance on the Stiffness and Strength of Drift-Pin Jointed Bongossi Wood with Steel Plate Inserted. Mokuzai Gakkaishi. 44(5) : 360-367.
  5. National Forest Products Association. National Design Specification. Washington, DC: National Forest Products Association; 1986. p. 87.
  6. Kawamoto, N., K. Komatsu, and N. Kanaya. 1992. Lateral Strengths of Drift-Pin Joints in Perpendicular to the Grain Loadings I. Mokuzai Gakkaishi. 38(1) : 37-45.
  7. Kawamoto, N., K. Komatsu, and M. Harada. 1992. Lateral Strengths of Drift-Pin Joints in Perpendicular to the Grain Loadings II. Mokuzai Gakkaishi. 38(12) : 1111-1118.
  8. Kawamoto, N., K. Komatsu, and M. Harada. 1993. Lateral Strengths of Drift-Pin Joints in Perpendicular to the Grain Loadings III. Mokuzai Gakkaishi. 39(12) : 1386-1392.
  9. Masse, D. I., J. J. Salinas, and J. E. Turnbull, 1988. Lateral strength and stiffness of single and multiple bolts in glued laminated timber loaded parallel to grain. Unpublished contract No. C-029. Ottawa, Canada: Engineering and Statistics Research Centre, Research Branch, Agriculture Canada.
  10. Moss, P. J. 1997. Multiple-bolted joints in wood members: a literature review. Gen. Tech. Rep. FPL-GTR-97. Madison, WI: U.S. Department of Agriculture, Forest Products Laboratory. p. 18.
  11. Hirai. T. 1983. The effect of end and side distances on the lateral resistance of bolted wood-jonts Loaded perpendicular to the grain. Mokuzai Gakkaishi. 29(2) : 118-122.