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Abstract. The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there 
are N = {1, 2, …, n } which is a set of item indices and L = {s1, s2, …, sn} be a set of item sizes sj, where 0 <sj 
≤ 1,∀ j ∈ N. The objective is to minimize the number of bins used for packing items in N into a bin such that the 
total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In 
the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to 
optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case 
ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. 
Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a 
lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit 
Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin 
is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the 
FFD solution. The occupied space is later called the weighting function. The objective is to determine the 
maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the 
asymptotic worst-case ratio.  
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1.  INTRODUCTION 

In a Bin Packing Problem (BPP), let N = {1, 2, …, 
n} be a set of item indices and L = {s1, s2, …, sn} be a 
set of item sizes sj, where 0 < sj ≤ 1; ∀ j ∈ N. The objec-
tive is to minimize the number of bins used for packing 
items in N into a bin such that the total size of items in a 
bin does not exceed the bin capacity. Assume that the 
bins have capacity equal to one. According to Garey and 
Johnson (1979) and Coffman et al. (1997), a BPP is an 
NP-Complete Problem. We review some traditional heu-
ristics for the BPP. Each algorithm indexes bins {1, 2, 
…, n} in the order they are opened.  

2.  LITERATURE REVIEW 

The research focuses on the unit-capacity bin pack-
ing problem and the First Fit Decreasing (FFD) algo-
rithm. First, Johnson et al. (1974), and Johnson (1973) 
show that the asymptotic worst-case performance ratio 
for First Fit (FF) and Best Fit (BF) is not more than 
17/10, and not more than 11/9 for either FFD or Best Fit 

Decreasing (BFD). They prove that FFD(L) ≤ 11/9 OPT 
(L) + 4, ∀ L, where L is a list of items in the BPP, 
OPT(L) is the minimum required number of bins for a 
list L, and FFD(L) is the number of bins used by the 
FFD heuristic. They use a weighting function to show 
the worst-case performance of these heuristics. The 
weighting function depends on the item sizes and the 
packing location.  

Later, Baker (1983) proves the theorem that FFD(L) 
≤ 11/9 OPT (L) + 3, ∀ L. In his proof, he partitions the 
last item size into subintervals, and proves that each 
subinterval does not violate the theorem by the weight-
ing function. He shows that in the FFD bins, an item of 
size greater than one third requires the same number of 
bins as would the optimal solution. Moreover, an item of 
size strictly less than 2/11 automatically satisfies the 
theorem. This reduces the length of the proof by consid-
ering only four intervals of the size of the last item in a 
list L. 

Frisen and Langston (1991) use a new technique 
called the weighting function averaging to prove the 
worst-case performances of FFD and B2F (Best two Fit) 
algorithms which are equal to 11/9 and 5/4, respectively. 
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They propose a compound algorithm, which combines 
both FFD and B2F algorithms in regions in which they 
are superior. Then, they prove by using a weighting 
function whose worst-case performance is no greater 
than 6/5. They shorten the length of the proof by reduc-
ing the size of the last item to an interval of (1/6, 1). 

Yue (1991) proposes a simpler proof and provides a 
tighter bound with FFD(L) ≤ 11/9 OPT(L) + 1, ∀ L. The 
proof is based on a weighting function and minimal 
counter example. He shows that the counter example 
does not exist for his theorem. In addition, he reduces 
the number of intervals of the size of the last item to 
three which is similar to the work of Baker. 

3.  THEOREM AND PROOF  

Theorem 1 
*

*
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( ) 11
9( )lim

H

z L

z L
z L→∞

≤ , and the ratio is tight.  

Theorem 1 implies that the total number of bins 
generated by the FFD is not more than 22.22 % more 
bins than the number of optimal bins for BPP.  

3.1 Preliminary  

In this section, we present properties and lemmas to 
support the proof of Theorem 1. We will prove Theorem 
1 by contradiction. Suppose there exists a list that vio-
lates the theorem. Let L be a minimum list that violates 
the theorem. That is zH(L) >11/9 z*(L), but zH(L′) ≤ 11/9 
z*(L′), for L′⊂ L. Define z*(L) be the minimum number 
of bins used to pack items in a list L and zH(L) be the 
number of bins used by FFD algorithm to pack items in 
a list L. Define Jb be a set of items in any FFD bin b = 1, 
…, zH(L) and J*

b be a set of items in any optimal bin b = 
1, …,  z*(L). However, we will call J and J* for the short 
notation of any FFD bin and optimal bin, respectively. 
After sorting items in a list L, let si be the size of the 
item ith and sn be the size of the last item. Then, we pro-
pose the following lemmas to support the proof.  

 
Lemma 1: For all b = 1, 2, …, zH(L)-1, we have that 

|Jb| ≥ 2.  
Proof: Consider a list L using exactly d+1 bins in FFD. 

Suppose Jb = {j} for some b = 1, 2, …, d. Then, 
sj + sn > 1. Thus, J*

e = {j} for some e = 1, 2, …, 
z*. First, remove item j from a list L and call the 
new list L′. Then, z*( L′) = z*(L)-1 ≤ 9/11 zH(L)-1 
≤ 9/11 (zH(L′)+1)-1 ≤ 9/11 zH(L′) -2/11. Hence, 
contradict with L, in which it is a minimum list 
that violates Theorem 1.  

 
Lemma 2: For all b = 1, 2, …, z*(L)-1, we have that 

|J*
b| ≥ 3.  

Proof: The proof is done by Yue (1991).  
 

Next, we partition the range of the size of the last 
item (sn) into five ranges as follows: 
1. If sn > 1/3, then zH(L) = z*(L). Since sn > 1/3, implies 

|J*
b| ≤ 2. Combine with Lemma 1, it implies zH(L) = 

z*(L).  
2. If sn < 2/11, then zH(L) ≤ 11/9 z*(L). Since the item of 

size less than 2/11 cannot be packed in any previous 
bin before the last bin. This implies that the total con-
tent of any bin except the last bin must be less than 
9/11. Then, the sum of the item sizes is at least 
9/11(zH(L) -1). Then, z*(L) ≥ 9/11(zH(L) -1) or zH(L) ≤ 
11/9 z*(L)+1.  

For 2/11 ≤ sn ≤ 1/3, we partition into three ranges 
and we will proof this by using weighting function.  

3. If 1/6 < sn ≤ 1/5, then zH(L) ≤ 73/60 z*(L). 
4. 5If 1/5 < sn ≤ 1/4, then zH(L) ≤ 11/9 z*(L). 
5. If 1/4 < sn ≤ 1/3, then zH(L) ≤ 7/6 z*(L). 

3.2 The Maximum Occupied Space Technique  

In this section, we present the maximum occupied 
space technique, using similar idea as the weighting 
function. In the literature, Johnson (1973), Johnson et al. 
(1974), Baker (1983), Frisen and Langston (1991) and 
Yue (1991) use the weighting function to prove the FFD 
worst-case performance of FFD. It shows that the weigh-
ting function is an effective method to prove the worst-
case performance of an offline algorithm for the bin pac-
king problem.  

In the FFD packing, the actual size of the item does 
not indicate the space required for the packing. On the 
other hand, the weight of an item represents the space 
occupied by the item to pack in a bin. For example, if sn 
= 1/6 and one of the bins has three items each of size 2/7 
with the total size of 6/7, then we assign the weight of 
these items to 1/3. It shows that each item occupies the 
equal space of 1/3 instead of 2/7. Notice that the weight 
of an item is not smaller than its size. 

Let W(i) be the space occupied by an item i, W(Jb) 
and W(J*

b) be the space occupied by the FFD and opti-
mal bin b, respectively. Similarly, define W(L) to be the 
total space occupied by items in a list L. 

By the FFD rule, we define the types of the FFD 
bins as follows: 

 
1. A Pure Bin. It is a bin containing only items of the 

same range (Rj), which occurs only to a pure item (pi-
item), where a pi-item is an item that is packed in a 
bin when all higher indexed bins are empty. There are 
i items of type pi in J. The size of a pi-item is deter-
mined so that FFD packs i items of pi into a pi-bin. 

2. A Non-Pure Bin. It is a bin containing items of differ-
ent ranges. There are two types of non-pure bins de-
fined as follows: 
2.1 A Fallback Bin. It contains i items of non-pure items 

(ni-item) and at least one fallback items, where a 
non-pure item is an item that is packed in a bin 
with smaller items. A fallback item is an item that 
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is packed in a bin when the higher indexed bin is 
not empty. There are two types of a fallback bin: 
an n1 bin containing a G item which is an item of 
size ≥ 1/2 and smaller items, and an ni bin, for i ≥ 
2 containing i items of ni and one or more fall-
back items. 

2.2 A Transition Bin. It is a bin containing the highest 
indexed item of any of item types except type n1, 
i.e. it is the last FFD bin of each item type except 
G bin. The total number of transition bins is not 
more than the total number of the pi and ni types 
of bins.  

 
For example, n1-bin (G bin), p2-bin, and n3-bin rep-

resent the bins that contain n1, p2 and n3 as the first item 
in the bin, respectively. We call the occupied space for 
bin packing as the weight and assign the weight of the 
FFD bin so that the total weight in each bin is equal to 
one. To avoid the numerous values of the weight of dif-
ferent items, we unify the weight of the item type. For 
1/(m+1) < sn ≤ 1/m, where m = 3, 4, 5, the weight of the 
same item type is unique and follows the following rules: 

 
1. If item j is of type pi, then W(j) = 1/i. 
2. If item j is of type n1 or G, then W(j) = 1-1/m. 
3. If item j is of type ni, for i >1, then W(j) = (m-2)/(i* 

(m-1)).  
 
Next, we define the ranges of item sizes for 1/(m+1) 

< sn ≤ 1/m as follows: 
 

1. To determine the maximum size of an item type n1 or 
G, by Lemma 2, we have |J*

b| ≥ 3. Thus, sG < 1 – 2* sn. 
2. For a pi item, 1-sn ≤ i*spi  < 1, ∀ i < m. Thus, (1-sn)/i 
≤ spi < 1/i. 

3. For an ni item spi+1 ≤ sni  < spi, ∀ i = {2, …, m -1}. 
4. The last range is sn ≤ spi < sni-1, for i = m. 

 
Next, we define zH = zH(L) and z* = z*(L) and use 

these notation for the rest of the paper. Then, we derive 
the following lemma to proof Theorem 1: 

 

Lemma 3 
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≤
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Where A is a positive number. We need to show that WM 
is equal to 11/9.  

3.3 The Integer Program for the Maximum Space 
Occupied by the Optimal Bins 

In this section, we adapt an integer program for the 
Open Bin Packing Problem by Ongkunaruk (2005) to 
show how to determine the maximum value of W(J*

b) 
for the BPP. The objective is to determine the maximum 
occupied space of the optimal packing so that the total 
size of the items in a bin is not more than one. For 
1/(m+1) < sn ≤ 1/m, we can formulate the problem as 
follows:  

 
Problem 1: max ( ) i

i

w i x∑  

. . ( ) 1.i i
i

s t LS m x ≤∑                      (4) 

j j 10,   integer i {n ,p } j {1, ,m-1}.ix +≥ ∀ ∈ ∀ =  (5) 
 
Where xi is the number of item type i in J* (See 

Ex.1), LSi(m) ∈ LS(m), where LS(m) is a set of the 
smallest size of item types, which is a function of sn, and 
sn is a function of m. Furthermore, W(i) is the occupied 
space function of an item type i. Constraint 4 requires 
that the total content of items in J* must be ≤ 1. Con-
straint 5 requires that the number of items of type i in J* 
must be a positive integer. The objective is to determine 
the maximum occupied space in J*. We need to modify 
the left hand side of Constraint 4 since the value of 
LSi(m) depends on sn ∈ (1/(m+1), 1/m]. Let LSi(m) = ai 
+ bisn. Then, consider the following two cases: 

 
1. If b ≥ 0, then we use the lower bound of sn since  

p2 

p2 

n2 

n2 

p3 

p2-Bin n2-Bin

p3 

p3 

p3 

p2 

p3-Bin

n2 

t-Bin last Bin 

p3 n2 

p3 

p3 

t-Bin

… …… 

 

 
Figure 1. An example of the FFD packing that contains a p2 bin, a transition bin, a n2 bin, a p3 bin and the last bin, 

respectively.  
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m δ
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Where δ is the least common factor of the denomi-

nators of LS(m), for sn = 1/(m+1). 
 

2. If b < 0, then we use the upper bound of sn since  
 

1( ( ) ) ( ) 1 i i i i i n i
i i

a b x a b s x
m

+ ≤ + ≤∑ ∑        (7) 

 
If the lower bound of the size is not an exact value, 

we add the small value by using the least common factor 
of the denominators of LS(m). From these two cases, we 
can formulate an integer program by using sn = 1/m and 
sn = 1/(m+1) + 1/2δ. Then, we select the maximum ob-
jective function or W(J*

b) between two integer programs 
as shown in Example 1. 

 
Example 1: An integer program for m = 3 or 1/4 < sn ≤ 

1/3. The occupied space and sizes of items 
are in Table 1. First, if sn = 1/3, then LS(3) 
= {(1-1/3)/2+1/2ε, 1/3+1/4ε, 1/3} = {5/12, 
3/8, 1/3}, where ε = 6. The integer program 
is as follows: 

 

2 2 3

1 1 1max   
2 3 3p n px x x+  

2 2 3

5 3 1. .   1
12 8 3p n ps t x x x+ ≤  

2 2 3
 or   10 9 8 24p n px x x+ ≤                    (8) 

2 2 3
, , 0,   integer  p n px x x ≥                 (9) 

 
Next, if sn = 1/4+1/2δ, where δ = 2*3*4 = 24. Then, 

LS(3) = {(1-13/48)/2+1/2ε, 1/3+1/4ε, 13/48}, where ε 
=24. Thus, LS(3) = {37/96, 11/32, 13/48}, then Con-
straint 8 changes to 

 
 

2 2 3

37 11 13 1 
96 32 48p n px x x+ ≤                (10) 

 
After solving two problems, the optimal solution is 

J* = (p2, n2, p3) and W(J*
b) = 7/6. The integer programs 

for m = 4 and m = 5 are shown in Appendix. 
 
Table 1. Summary of item sizes and weight for 

1/4 < sn ≤ 1/3. 

Items Types Range of Item Sizes Occupied Space 

p2 ((1-sn)/2, 1/2] 1/2 
n2 (1/3, (1-sn)/2) 1/3 
p3 (sn, 1/3] 1/3 

3.4 The Proof of Theorem 1 

In this section, we use Lemma 3 for the proof of 
1/6 ≤ sn ≤ 1/3. We partition the range into three ranges. 
In each range, we derive the maximum occupied space 
as follows:  

 
3.4.1 If 1/4 < sn ≤ 1/3, then zH(L) ≤ 7/6 z* (L)  
In this case, we have that |J*b| ≤ 3. Combine this 

with Lemma 2, we have that |J*b| = 3. Since sG+2sn > 
1/2+2*1/4 =1. Thus, G item is not in J*. Table 1 shows 
item sizes and weight for 1/4 < sn ≤ 1/3.  

According to the FFD rule (see Figure 1), two 
items of item type p2, two items of item type n2 with one 
item of type p3, and three items of type p3; except the 
transition bins with the total weight ≤ 3. Each of Other 
FFD bins has total occupied space equal to one. From 
the integer program, we have WM ≤ 7/6. Thus, we have 

 
*73

6
Hz z− ≤  

*7 3
6

Hz z≤ +  

*
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z L
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≤
 

 
3.4.2 If 1/5 < sn ≤ 1/4, then zH(L) ≤ 11/9 z* (L) 
According to the FFD rule, an item of type G will 

be packed with one or two smaller items, two items of 
item type p2, two items of item type n2 with one item of 
type p3 or smaller, three items of type p3, three items of 
item type n3 with one item of type p4 and four items of 

G 

t 

m 

6N 2N 3N 

G 

m′ 

6N 

m 

m 

m 

t 

t 

 

t 

m′ 

m′ 

 t 

t 

3N 

 

 
Optimal Packing         FFD Packing 

Figure 2. An example of the worst case example of FFD packing using 11N bins and optimal packing using 9N bins, 
where sm′ > sm 
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type p4; except the transition bins with the total weight ≤ 
5. Each of the remaining FFD bins has weight ≥1. Ac-
cording to the size and weight in Table 2, we solve the 
integer program, and get the result as follows:  

 
1. If there is no G item in a bin, then WM ≤ 7/6 and J* = 

(2p3, 2p4) or (2m, 2t). 
2. If there is a G item in a bin, then WM ≤ 4/3 and J* = (G, 

p3, p4) or (G, m, t). 
 
However, when there is a G item in a bin, some of 

the FFD bins also have total weight greater than one. 
Hence, we need to adjust the weight of the optimal bin 
by reducing its weight according to the extra space of 
the FFD bin. In short,  

we subtract the weight of the optimal bin equal to 
the weight of the FFD bin that is greater than one. 

 
Table 2. Summary of item sizes and weight for 

1/5 < sn ≤ 1/4. 

 Items Types Range of Item Sizes Occupied Space
G (1/2, 3/5] 3/4 
p2 ((1-sn)/2, 1/2] 1/2 
n2 (1/3, (1-sn)/2) 3/8 
p3 ((1-sn)/3, 1/3] 1/3 
n3 (1/4, (1-sn)/3] 1/4 
p4 [sn, 1/4] 1/4 

 
Define a non G item of size ≥ (1-sn)/3 as an item of 

type m (that is an item of type p2, n2 or p3). Also, define 
a non G item of size < (1-sn)/3 as an item of type t (that 
is an item of type n3 or p4). In this case, we present the 
weight adjustment for the G bin. Let X

YG  be a set of 
items of type G packed with items of set X in J, but 
packed with items of set Y in J*. For example, any item i 
∈ m

mtG  implies an items i of type G is packed with an 
item of type m only in J, but packed with an item of type 
m and t in J*. Since an item of type m is larger than that 
of type t, by the FFD rule, t

mtG φ=  and .φ=mt
ttG  Next, 

consider the weight adjustment. For example, if a G 
item is packed with an item of type m and t in J*, then 
W(J*) ≤ 4/3, but packed with m in J, then we can adjust 
1/12 to the weight of the optimal bin. Then, consider the 
following adjustments: 

 
1. For i ∈ m

mtG , W(J*) ≤ 4/3-13/12+1 = 5/4.  
2. For i ∈ mt

mtG , W(J*) ≤ 4/3-4/3+1 = 1. 
3. For i ∈ tt

mtG , W(J*) ≤ 4/3-5/4+1 = 13/12. 
4. For i ∈ t

ttG , W(J*) ≤ 5/4-1+1 = 5/4. 
5. For i ∈ m

ttG , W(J*) ≤ 5/4-13/12+1 = 7/6. 
6. For i ∈ tt

ttG , W(J*) ≤ 5/4-5/4+1 = 1. 
 

In addition, we found that the worse packing of 
FFD is the combination of G bin and non G bin as 

shown in Figure 2. Thus, the maximum weight is the 
average weight of the proportion of the weight of these 
bins. Consider the following property: 

 
Property 1: A t item packed with i ∈ t

ttG in the FFD so-
lution cannot packed with a G bin j ∈ t

ttG  
in the optimal solution.  

Proof: Suppose there exist such a packing, i.e. let i = G1 
and the t item mentioned is t’

2. Then, J*
1 = (G1, t’

1, 
t’’

1), J*
2 = (G2, t’

2, t’’
2), and t’

2 packed with G1 only 
in the FFD packing, i.e. J1 = (G1, t’

2) exists. Since 
t’

2 packed with G1 only, but packed with G2 and 
t’’

2 in the optimal solution, sG1 > sG2. Consider the 
FFD packing, there must exist an item k of type t 
packed with G2 in J must be too large to packed 
with G1, i.e. sG1 + sk > 1. Since, sG1 < 1-2sn, then 
sk > 1- sG1 = 2sn. If 1/5 < sn ≤ 1/4, then sk > 2/5 
contradicts with the size of t < (1-sn)/3 = 1/4. In 
addition, if 1/6 < sn ≤ 1/5, then sk > 2/6 contra-
dicts with the size of t < (1-sn)/3 = 4/15.   

 
Next, we consider the following possibilities:  
 

1. If i ∈ m
mtG ≠ ∅ and j ∈ t

ttG = ∅, then an item of type m 
packed with i in the FFD packing must come from the 
optimal bin with weight ≤ 7/6, in which at most two 
of i-bin packed with the bin containing the item of 
type m. Thus, the average can be calculated as fol-
lows:  
 

2 5 1 7 11* *
3 4 3 6 9

MW ≤ + = . 

 
2. If i ∈ m

mtG = ∅ and j ∈ t
ttG ≠ ∅, then by Property 1, an 

item of type t packed with j in the FFD solution must 
come from the optimal bin with weight ≤ 7/6. Thus, 
the average can be calculated as follows:  

 
2 5 1 7 11* *
3 4 3 6 9

MW ≤ + = . 

 
3. If i ∈ m

mtG ≠ ∅ and j ∈ t
ttG ≠ ∅, then the average cannot 

be greater than 11/9. Since there must exist an item k 
∈ m

ttG with weight 7/6 packed with i and j and the non-
G bins by at most the proportion of 2:2:2:1, respec-
tively. Thus, the average can be calculated as follows:  

 
4 5 3 7 17 11* *
7 4 7 6 14 9

MW ≤ + = < . 

 
4. If i ∈ m

mtG =∅ and j ∈ t
ttG = ∅, then WM ≤ 7/6. 

 
Thus, we have that 
 

*115 .
9

Hz z− ≤  

*11 5.
9

Hz z≤ +  
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3.4.3 If 1/6 < sn ≤ 1/5, then zH(L) ≤ 11/9 z* (L) 
According to the FFD rule, an item of type G will 

be packed with one or two smaller items, two items of 
item type p2, two items of item type n2 with one item of 
type p3 or smaller, three items of type p3, three items of 
item type n3 with a smaller item, four items of type p4, 
four items of item type n4 with one item of type p5 and 
five items of type p5; except the transition bins with the 
total weight ≤ 7. Each of the remaining FFD bins has 
weight ≥1. According to the size and weight in Table 3, 
we solve the integer program, and get the result as fol-
lows:  

 
1. If there is no G item in a bin, then WM ≤ 71/60 and J* 

= (p3, p4, 3p5) or (m, 4t). 
2. If there is a G item in a bin, then WM ≤ 83/60 and J* = 

(G, p3, p4) or (G, m, t). 
 
Similar to the previous case, consider the following 

weight adjustments: 
 

1. For i ∈ m
mtG , W(J*) ≤ 83/60-17/15+1 = 5/4. 

2. For i ∈ mt
mtG , W(J*) ≤ 83/60-4/3+1 = 21/20. 

3. For i ∈ tt
mtG , W(J*) ≤ 83/60-5/4+1 = 17/15. 

4. For i ∈ t
ttG , W(J*) ≤ 13/10-21/20+1 = 5/4. 

5. For i ∈ m
ttG , W(J*) ≤ 13/10-17/15+1 = 7/6. 

6. For i ∈ tt
ttG , W(J*) ≤ 13/10-5/4+1 = 21/20. 

 
Table 3. Summary of item sizes and weight for 

1/6 < sn ≤ 1/5. 

Items Types Range of Item Sizes Occupied Space 
G (1/2, 2/3] 4/5 
p2 ((1-sn)/2, 1/2] 1/2 
n2 (1/3, (1-sn)/2) 2/5 
p3 ((1-sn)/3, 1/3] 1/3 
n3 (1/4, (1-sn)/3] 4/15 
p4 [(1-sn)/4, 1/4] 1/4 
n4 (1/5, (1-sn)/4] 1/5 
p5 [sn, 1/5] 1/5 

 
Similarly, we consider the following possibilities: 

1. If i ∈ m
mtG ≠ ∅ and j ∈ t

ttG = ∅, then an item of type m 
packed with i in the FFD packing must come from the 
optimal bin with weight ≤ 71/60, in which at most one 
of i-bin packed with the bin containing the item of 
type m. Thus, the average can be calculated as fol-
lows:  

 
1 5 1 71 73 11* *
2 4 2 60 60 9

MW ≤ + = < . 

 
2. If i ∈ m

mtG = ∅ and j ∈ t
ttG ≠ ∅, then by Property 1, an 

item of type t packed with j in the FFD solution must 
come from the optimal bin with weight ≤ 71/60. Thus, 
the average can be calculated as follows:  

 
1 5 1 71 73 11* *
2 4 2 60 60 9

MW ≤ + = < . 

 
3. If i ∈ m

mtG ≠ ∅ and j ∈ t
ttG ≠ ∅, then the average cannot 

be greater than 11/9. Since there must exist an item k 
∈ m

ttG with weight 7/6 packed with i and j and the non-
G bins by at most the proportion of 2:2:2:1, respec-
tively. Thus, the average can be calculated as follows: 

  
4 5 2 7 1 71 73 11* * *
7 4 7 6 7 60 60 9

MW ≤ + + = < . 

 
4. If i ∈ m

mtG =∅ and j ∈ t
ttG = ∅, then WM ≤ 71/60. 

 
Thus, we have that  
 

*737 .
60

Hz z− ≤  

*73 7.
60

Hz z≤ +  

*
*

( )

( ) 73 .
60( )lim

H

z L

z L
z L→ ∞

≤  

 
From all cases, there is no list L that violates Theo-

rem 1. This completes the proof. 

4. CONCLUSION 

In the past, the asymptotic worst-case ratio of heu-
ristics for the bin packing problem (BPP) has been pro-
ved to show the quality of those heuristics. The First Fit 
Decreasing (FFD) is one of the algorithms that its as-
ymptotic worst-case ratio equals to 11/9. Many resear-
chers prove the asymptotic worst-case ratio by using the 
weighting function in a lengthy format. In this study, we 
shorten the proof from two ideas. First, the occupied 
space in a bin is more than the size of the item. Second, 
the occupied space in the optimal solution is less than 
occupied space in the FFD solution. The occupied space 
is equivalent to the weighting function. The objective is 
to determine the maximum occupied space of the heuris-
tics by using integer programming with a limited num-
ber of variables and constraints. Then, the maximum 
ratio is derived by matching items case by case as shown 
in previous section.  
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APPENDIX 

An integer program for 1/5 < sn ≤ 1/4 as the oc-
cupied space and sizes of items in Table 2.  

First, if sn = 1/4, then LS(4) = {1/2+1/2ε, (1-1/4)/2 
+1/2ε, 1/3+1/4ε, (1-1/4)/3+1/2ε, 1/4+1/8ε, 1/4} ={25/28, 

19/28, 33/96, 13/48, 49/192, 1/4}, where ε = 24. The 
integer program is as follows: 

 

2 2 3 3 4

3 1 1 1 1 1max   
4 2 3 3 4 4G p n p n px x x x x x+ + + + +  

2 2 3 3 4

25 19 33 13 49 1. .   1
48 48 96 48 192 4G p n p n ps t x x x x x x+ + + + ≤  

2 2 3 3 4
or     100 96 66 52 49 48 192G p n p n px x x x x x+ + + + + ≤  

2 2 3 3 4
, , , , , 0,   integerG p n p n px x x x x x ≥   

 
Next, if sn = 1/5+1/2δ = 17/80, where δ = 40. Then, 

LS(4) = {1/2 + 1/2ε, (1-17/80)/2 + 1/2ε, 1/3 + 1/4ε, (1-
17/80)/3 + 1/2ε, 1/4 + 1/8ε, 17/80} = {81/160, 65/160, 
163/480, 66/240, 81/320, 17/80}, where ε = 40. Then, 
the constraint becomes 

 
2 2 3 3 4

486 390 326 264 243 204 960G p n p n px x x x x x+ + + + + ≤  
 
An integer program for 1/6 < sn ≤ 1/5, as the oc-

cupied space and sizes of items in Table 3.  
First, if sn = 1/5, then LS(5) = {1/2+1/2ε, (1-1/5)/2 

+ 1/2ε, 1/3 + 1/4ε, (1-1/5)/3 + 1/2ε, 1/4 + 1/8ε, (1-1/5)/4 
+ 1/2ε, 1/5 + 1/16ε, 1/5} = {242/480, 194/480, 161/480, 
130/480, 241/960, 98/480, 385/1920, 1/5}, where ε = 
120. The integer program is as follows: 

 

2 2 3 3 4 4 5

4 1 2 1 4 1 1 1max   
5 2 5 3 15 4 5 5G p n p n p n px x x x x x x x+ + + + + + +

2 2 3 3 4

242 194 161 130 241 98. .   
480 480 480 480 960 480G p n p n ps t x x x x x x+ + + + +

   
4 5

385 1 1  
1920 5n px x+ + ≤  

2 2 3 3 4
or     968 766 644 520 482 392G p n p n px x x x x x+ + + + +  

4 5
385 384 1920n px x+ + ≤  

2 2 3 3 4 4 5
, , , , , , , 0,   integerG p n p n p n px x x x x x x x ≥  

 
Next, if sn = 1/6+1/2δ = 7/40, where δ = 60. Then, 

LS(5) = {1/2 + 1/2ε, (1-7/40)/2 + 1/2ε, 1/3 + 1/4ε, (1-7/ 
40)/3 + 1/2ε, 1/4 + 1/8ε, (1-1/5)/4 + 1/2ε, 1/5 + 1/16ε, 
7/40}, where ε = 60. Then, the constraint becomes 

  
2 2 3 3 4

488 404 324 272 242 206G p n p n px x x x x x+ + + + +  

4 5
193 168 960n px x+ + ≤  

 
 

 


