
IEMS Vol. 7, No. 2, pp. 126-132, September 2008.

The Asymptotic Worst-Case Ratio of the Bin Packing
Problem by Maximum Occupied Space Technique

Pornthipa Ongkunaruk†
Program of Agro-Industry Technology Management

Faculty of Agro-Industry, Kasetsart University, Bangkok 10900 THAILAND
+662-562-5000 Ext. 5363, E-mail: fagipoo@ku.ac.th

Selected paper from APIEM 2006

Abstract. The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there
are N = {1, 2, …, n } which is a set of item indices and L = {s1, s2, …, sn} be a set of item sizes sj, where 0 <sj
≤ 1,∀ j ∈ N. The objective is to minimize the number of bins used for packing items in N into a bin such that the
total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In
the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to
optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case
ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9.
Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a
lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit
Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin
is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the
FFD solution. The occupied space is later called the weighting function. The objective is to determine the
maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the
asymptotic worst-case ratio.

Keywords: The Bin Packing Problem, Heuristic, Asymptotic Worst-case Ratio, Maximum Occupied Space

1. INTRODUCTION

In a Bin Packing Problem (BPP), let N = {1, 2, …,
n} be a set of item indices and L = {s1, s2, …, sn} be a
set of item sizes sj, where 0 < sj ≤ 1; ∀ j ∈ N. The objec-
tive is to minimize the number of bins used for packing
items in N into a bin such that the total size of items in a
bin does not exceed the bin capacity. Assume that the
bins have capacity equal to one. According to Garey and
Johnson (1979) and Coffman et al. (1997), a BPP is an
NP-Complete Problem. We review some traditional heu-
ristics for the BPP. Each algorithm indexes bins {1, 2,
…, n} in the order they are opened.

2. LITERATURE REVIEW

The research focuses on the unit-capacity bin pack-
ing problem and the First Fit Decreasing (FFD) algo-
rithm. First, Johnson et al. (1974), and Johnson (1973)
show that the asymptotic worst-case performance ratio
for First Fit (FF) and Best Fit (BF) is not more than
17/10, and not more than 11/9 for either FFD or Best Fit

Decreasing (BFD). They prove that FFD(L) ≤ 11/9 OPT
(L) + 4, ∀ L, where L is a list of items in the BPP,
OPT(L) is the minimum required number of bins for a
list L, and FFD(L) is the number of bins used by the
FFD heuristic. They use a weighting function to show
the worst-case performance of these heuristics. The
weighting function depends on the item sizes and the
packing location.

Later, Baker (1983) proves the theorem that FFD(L)
≤ 11/9 OPT (L) + 3, ∀ L. In his proof, he partitions the
last item size into subintervals, and proves that each
subinterval does not violate the theorem by the weight-
ing function. He shows that in the FFD bins, an item of
size greater than one third requires the same number of
bins as would the optimal solution. Moreover, an item of
size strictly less than 2/11 automatically satisfies the
theorem. This reduces the length of the proof by consid-
ering only four intervals of the size of the last item in a
list L.

Frisen and Langston (1991) use a new technique
called the weighting function averaging to prove the
worst-case performances of FFD and B2F (Best two Fit)
algorithms which are equal to 11/9 and 5/4, respectively.

† : Corresponding Author

 The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique 127

They propose a compound algorithm, which combines
both FFD and B2F algorithms in regions in which they
are superior. Then, they prove by using a weighting
function whose worst-case performance is no greater
than 6/5. They shorten the length of the proof by reduc-
ing the size of the last item to an interval of (1/6, 1).

Yue (1991) proposes a simpler proof and provides a
tighter bound with FFD(L) ≤ 11/9 OPT(L) + 1, ∀ L. The
proof is based on a weighting function and minimal
counter example. He shows that the counter example
does not exist for his theorem. In addition, he reduces
the number of intervals of the size of the last item to
three which is similar to the work of Baker.

3. THEOREM AND PROOF

Theorem 1
*

*
()

() 11
9()lim

H

z L

z L
z L→∞

≤ , and the ratio is tight.

Theorem 1 implies that the total number of bins
generated by the FFD is not more than 22.22 % more
bins than the number of optimal bins for BPP.

3.1 Preliminary

In this section, we present properties and lemmas to
support the proof of Theorem 1. We will prove Theorem
1 by contradiction. Suppose there exists a list that vio-
lates the theorem. Let L be a minimum list that violates
the theorem. That is zH(L) >11/9 z*(L), but zH(L′) ≤ 11/9
z*(L′), for L′⊂ L. Define z*(L) be the minimum number
of bins used to pack items in a list L and zH(L) be the
number of bins used by FFD algorithm to pack items in
a list L. Define Jb be a set of items in any FFD bin b = 1,
…, zH(L) and J*

b be a set of items in any optimal bin b =
1, …, z*(L). However, we will call J and J* for the short
notation of any FFD bin and optimal bin, respectively.
After sorting items in a list L, let si be the size of the
item ith and sn be the size of the last item. Then, we pro-
pose the following lemmas to support the proof.

Lemma 1: For all b = 1, 2, …, zH(L)-1, we have that

|Jb| ≥ 2.
Proof: Consider a list L using exactly d+1 bins in FFD.

Suppose Jb = {j} for some b = 1, 2, …, d. Then,
sj + sn > 1. Thus, J*

e = {j} for some e = 1, 2, …,
z*. First, remove item j from a list L and call the
new list L′. Then, z*(L′) = z*(L)-1 ≤ 9/11 zH(L)-1
≤ 9/11 (zH(L′)+1)-1 ≤ 9/11 zH(L′) -2/11. Hence,
contradict with L, in which it is a minimum list
that violates Theorem 1.

Lemma 2: For all b = 1, 2, …, z*(L)-1, we have that

|J*
b| ≥ 3.

Proof: The proof is done by Yue (1991).

Next, we partition the range of the size of the last
item (sn) into five ranges as follows:
1. If sn > 1/3, then zH(L) = z*(L). Since sn > 1/3, implies

|J*
b| ≤ 2. Combine with Lemma 1, it implies zH(L) =

z*(L).
2. If sn < 2/11, then zH(L) ≤ 11/9 z*(L). Since the item of

size less than 2/11 cannot be packed in any previous
bin before the last bin. This implies that the total con-
tent of any bin except the last bin must be less than
9/11. Then, the sum of the item sizes is at least
9/11(zH(L) -1). Then, z*(L) ≥ 9/11(zH(L) -1) or zH(L) ≤
11/9 z*(L)+1.

For 2/11 ≤ sn ≤ 1/3, we partition into three ranges
and we will proof this by using weighting function.

3. If 1/6 < sn ≤ 1/5, then zH(L) ≤ 73/60 z*(L).
4. 5If 1/5 < sn ≤ 1/4, then zH(L) ≤ 11/9 z*(L).
5. If 1/4 < sn ≤ 1/3, then zH(L) ≤ 7/6 z*(L).

3.2 The Maximum Occupied Space Technique

In this section, we present the maximum occupied
space technique, using similar idea as the weighting
function. In the literature, Johnson (1973), Johnson et al.
(1974), Baker (1983), Frisen and Langston (1991) and
Yue (1991) use the weighting function to prove the FFD
worst-case performance of FFD. It shows that the weigh-
ting function is an effective method to prove the worst-
case performance of an offline algorithm for the bin pac-
king problem.

In the FFD packing, the actual size of the item does
not indicate the space required for the packing. On the
other hand, the weight of an item represents the space
occupied by the item to pack in a bin. For example, if sn
= 1/6 and one of the bins has three items each of size 2/7
with the total size of 6/7, then we assign the weight of
these items to 1/3. It shows that each item occupies the
equal space of 1/3 instead of 2/7. Notice that the weight
of an item is not smaller than its size.

Let W(i) be the space occupied by an item i, W(Jb)
and W(J*

b) be the space occupied by the FFD and opti-
mal bin b, respectively. Similarly, define W(L) to be the
total space occupied by items in a list L.

By the FFD rule, we define the types of the FFD
bins as follows:

1. A Pure Bin. It is a bin containing only items of the

same range (Rj), which occurs only to a pure item (pi-
item), where a pi-item is an item that is packed in a
bin when all higher indexed bins are empty. There are
i items of type pi in J. The size of a pi-item is deter-
mined so that FFD packs i items of pi into a pi-bin.

2. A Non-Pure Bin. It is a bin containing items of differ-
ent ranges. There are two types of non-pure bins de-
fined as follows:
2.1 A Fallback Bin. It contains i items of non-pure items

(ni-item) and at least one fallback items, where a
non-pure item is an item that is packed in a bin
with smaller items. A fallback item is an item that

128 Pornthipa Ongkunaruk

is packed in a bin when the higher indexed bin is
not empty. There are two types of a fallback bin:
an n1 bin containing a G item which is an item of
size ≥ 1/2 and smaller items, and an ni bin, for i ≥
2 containing i items of ni and one or more fall-
back items.

2.2 A Transition Bin. It is a bin containing the highest
indexed item of any of item types except type n1,
i.e. it is the last FFD bin of each item type except
G bin. The total number of transition bins is not
more than the total number of the pi and ni types
of bins.

For example, n1-bin (G bin), p2-bin, and n3-bin rep-

resent the bins that contain n1, p2 and n3 as the first item
in the bin, respectively. We call the occupied space for
bin packing as the weight and assign the weight of the
FFD bin so that the total weight in each bin is equal to
one. To avoid the numerous values of the weight of dif-
ferent items, we unify the weight of the item type. For
1/(m+1) < sn ≤ 1/m, where m = 3, 4, 5, the weight of the
same item type is unique and follows the following rules:

1. If item j is of type pi, then W(j) = 1/i.
2. If item j is of type n1 or G, then W(j) = 1-1/m.
3. If item j is of type ni, for i >1, then W(j) = (m-2)/(i*

(m-1)).

Next, we define the ranges of item sizes for 1/(m+1)

< sn ≤ 1/m as follows:

1. To determine the maximum size of an item type n1 or
G, by Lemma 2, we have |J*

b| ≥ 3. Thus, sG < 1 – 2* sn.
2. For a pi item, 1-sn ≤ i*spi < 1, ∀ i < m. Thus, (1-sn)/i
≤ spi < 1/i.

3. For an ni item spi+1 ≤ sni < spi, ∀ i = {2, …, m -1}.
4. The last range is sn ≤ spi < sni-1, for i = m.

Next, we define zH = zH(L) and z* = z*(L) and use

these notation for the rest of the paper. Then, we derive
the following lemma to proof Theorem 1:

Lemma 3
* *lim

→∞
≤

H
M

z

z W
z

, where WM is the maximum

occupied space of optimal bins.
Proof:

*

*

1 1

() () ()
HZ Z

b b
b b

W J W J W L
= =

= =∑ ∑ (1)
*

* *

1

()
Z

H M
b

b

z A W J W z
=

− = ≤∑ (2)

*H Mz W z A≤ + (3)

Where A is a positive number. We need to show that WM
is equal to 11/9.

3.3 The Integer Program for the Maximum Space
Occupied by the Optimal Bins

In this section, we adapt an integer program for the
Open Bin Packing Problem by Ongkunaruk (2005) to
show how to determine the maximum value of W(J*

b)
for the BPP. The objective is to determine the maximum
occupied space of the optimal packing so that the total
size of the items in a bin is not more than one. For
1/(m+1) < sn ≤ 1/m, we can formulate the problem as
follows:

Problem 1: max () i

i

w i x∑

. . () 1.i i
i

s t LS m x ≤∑ (4)

j j 10, integer i {n ,p } j {1, ,m-1}.ix +≥ ∀ ∈ ∀ = (5)

Where xi is the number of item type i in J* (See

Ex.1), LSi(m) ∈ LS(m), where LS(m) is a set of the
smallest size of item types, which is a function of sn, and
sn is a function of m. Furthermore, W(i) is the occupied
space function of an item type i. Constraint 4 requires
that the total content of items in J* must be ≤ 1. Con-
straint 5 requires that the number of items of type i in J*
must be a positive integer. The objective is to determine
the maximum occupied space in J*. We need to modify
the left hand side of Constraint 4 since the value of
LSi(m) depends on sn ∈ (1/(m+1), 1/m]. Let LSi(m) = ai
+ bisn. Then, consider the following two cases:

1. If b ≥ 0, then we use the lower bound of sn since

p2

p2

n2

n2

p3

p2-Bin n2-Bin

p3

p3

p3

p2

p3-Bin

n2

t-Bin last Bin

p3 n2

p3

p3

t-Bin

… ……

Figure 1. An example of the FFD packing that contains a p2 bin, a transition bin, a n2 bin, a p3 bin and the last bin,

respectively.

 The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique 129

1 1(()) () 1
1 2i i i i i n i

i i
a b x a b s x

m δ
+ + ≤ + ≤

+∑ ∑ (6)

Where δ is the least common factor of the denomi-

nators of LS(m), for sn = 1/(m+1).

2. If b < 0, then we use the upper bound of sn since

1(()) () 1 i i i i i n i
i i

a b x a b s x
m

+ ≤ + ≤∑ ∑ (7)

If the lower bound of the size is not an exact value,

we add the small value by using the least common factor
of the denominators of LS(m). From these two cases, we
can formulate an integer program by using sn = 1/m and
sn = 1/(m+1) + 1/2δ. Then, we select the maximum ob-
jective function or W(J*

b) between two integer programs
as shown in Example 1.

Example 1: An integer program for m = 3 or 1/4 < sn ≤

1/3. The occupied space and sizes of items
are in Table 1. First, if sn = 1/3, then LS(3)
= {(1-1/3)/2+1/2ε, 1/3+1/4ε, 1/3} = {5/12,
3/8, 1/3}, where ε = 6. The integer program
is as follows:

2 2 3

1 1 1max
2 3 3p n px x x+

2 2 3

5 3 1. . 1
12 8 3p n ps t x x x+ ≤

2 2 3
 or 10 9 8 24p n px x x+ ≤ (8)

2 2 3
, , 0, integer p n px x x ≥ (9)

Next, if sn = 1/4+1/2δ, where δ = 2*3*4 = 24. Then,

LS(3) = {(1-13/48)/2+1/2ε, 1/3+1/4ε, 13/48}, where ε
=24. Thus, LS(3) = {37/96, 11/32, 13/48}, then Con-
straint 8 changes to

2 2 3

37 11 13 1
96 32 48p n px x x+ ≤ (10)

After solving two problems, the optimal solution is

J* = (p2, n2, p3) and W(J*
b) = 7/6. The integer programs

for m = 4 and m = 5 are shown in Appendix.

Table 1. Summary of item sizes and weight for

1/4 < sn ≤ 1/3.

Items Types Range of Item Sizes Occupied Space

p2 ((1-sn)/2, 1/2] 1/2
n2 (1/3, (1-sn)/2) 1/3
p3 (sn, 1/3] 1/3

3.4 The Proof of Theorem 1

In this section, we use Lemma 3 for the proof of
1/6 ≤ sn ≤ 1/3. We partition the range into three ranges.
In each range, we derive the maximum occupied space
as follows:

3.4.1 If 1/4 < sn ≤ 1/3, then zH(L) ≤ 7/6 z* (L)
In this case, we have that |J*b| ≤ 3. Combine this

with Lemma 2, we have that |J*b| = 3. Since sG+2sn >
1/2+2*1/4 =1. Thus, G item is not in J*. Table 1 shows
item sizes and weight for 1/4 < sn ≤ 1/3.

According to the FFD rule (see Figure 1), two
items of item type p2, two items of item type n2 with one
item of type p3, and three items of type p3; except the
transition bins with the total weight ≤ 3. Each of Other
FFD bins has total occupied space equal to one. From
the integer program, we have WM ≤ 7/6. Thus, we have

*73

6
Hz z− ≤

*7 3
6

Hz z≤ +

*
*

()

() 7 .
6()lim

H

z L

z L
z L→ ∞

≤

3.4.2 If 1/5 < sn ≤ 1/4, then zH(L) ≤ 11/9 z* (L)
According to the FFD rule, an item of type G will

be packed with one or two smaller items, two items of
item type p2, two items of item type n2 with one item of
type p3 or smaller, three items of type p3, three items of
item type n3 with one item of type p4 and four items of

G

t

m

6N 2N 3N

G

m′

6N

m

m

m

t

t

t

m′

m′

 t

t

3N

Optimal Packing FFD Packing

Figure 2. An example of the worst case example of FFD packing using 11N bins and optimal packing using 9N bins,
where sm′ > sm

130 Pornthipa Ongkunaruk

type p4; except the transition bins with the total weight ≤
5. Each of the remaining FFD bins has weight ≥1. Ac-
cording to the size and weight in Table 2, we solve the
integer program, and get the result as follows:

1. If there is no G item in a bin, then WM ≤ 7/6 and J* =

(2p3, 2p4) or (2m, 2t).
2. If there is a G item in a bin, then WM ≤ 4/3 and J* = (G,

p3, p4) or (G, m, t).

However, when there is a G item in a bin, some of

the FFD bins also have total weight greater than one.
Hence, we need to adjust the weight of the optimal bin
by reducing its weight according to the extra space of
the FFD bin. In short,

we subtract the weight of the optimal bin equal to
the weight of the FFD bin that is greater than one.

Table 2. Summary of item sizes and weight for

1/5 < sn ≤ 1/4.

 Items Types Range of Item Sizes Occupied Space
G (1/2, 3/5] 3/4
p2 ((1-sn)/2, 1/2] 1/2
n2 (1/3, (1-sn)/2) 3/8
p3 ((1-sn)/3, 1/3] 1/3
n3 (1/4, (1-sn)/3] 1/4
p4 [sn, 1/4] 1/4

Define a non G item of size ≥ (1-sn)/3 as an item of

type m (that is an item of type p2, n2 or p3). Also, define
a non G item of size < (1-sn)/3 as an item of type t (that
is an item of type n3 or p4). In this case, we present the
weight adjustment for the G bin. Let X

YG be a set of
items of type G packed with items of set X in J, but
packed with items of set Y in J*. For example, any item i
∈ m

mtG implies an items i of type G is packed with an
item of type m only in J, but packed with an item of type
m and t in J*. Since an item of type m is larger than that
of type t, by the FFD rule, t

mtG φ= and .φ=mt
ttG Next,

consider the weight adjustment. For example, if a G
item is packed with an item of type m and t in J*, then
W(J*) ≤ 4/3, but packed with m in J, then we can adjust
1/12 to the weight of the optimal bin. Then, consider the
following adjustments:

1. For i ∈ m

mtG , W(J*) ≤ 4/3-13/12+1 = 5/4.
2. For i ∈ mt

mtG , W(J*) ≤ 4/3-4/3+1 = 1.
3. For i ∈ tt

mtG , W(J*) ≤ 4/3-5/4+1 = 13/12.
4. For i ∈ t

ttG , W(J*) ≤ 5/4-1+1 = 5/4.
5. For i ∈ m

ttG , W(J*) ≤ 5/4-13/12+1 = 7/6.
6. For i ∈ tt

ttG , W(J*) ≤ 5/4-5/4+1 = 1.

In addition, we found that the worse packing of
FFD is the combination of G bin and non G bin as

shown in Figure 2. Thus, the maximum weight is the
average weight of the proportion of the weight of these
bins. Consider the following property:

Property 1: A t item packed with i ∈ t

ttG in the FFD so-
lution cannot packed with a G bin j ∈ t

ttG
in the optimal solution.

Proof: Suppose there exist such a packing, i.e. let i = G1
and the t item mentioned is t’

2. Then, J*
1 = (G1, t’

1,
t’’

1), J*
2 = (G2, t’

2, t’’
2), and t’

2 packed with G1 only
in the FFD packing, i.e. J1 = (G1, t’

2) exists. Since
t’

2 packed with G1 only, but packed with G2 and
t’’

2 in the optimal solution, sG1 > sG2. Consider the
FFD packing, there must exist an item k of type t
packed with G2 in J must be too large to packed
with G1, i.e. sG1 + sk > 1. Since, sG1 < 1-2sn, then
sk > 1- sG1 = 2sn. If 1/5 < sn ≤ 1/4, then sk > 2/5
contradicts with the size of t < (1-sn)/3 = 1/4. In
addition, if 1/6 < sn ≤ 1/5, then sk > 2/6 contra-
dicts with the size of t < (1-sn)/3 = 4/15.

Next, we consider the following possibilities:

1. If i ∈ m
mtG ≠ ∅ and j ∈ t

ttG = ∅, then an item of type m
packed with i in the FFD packing must come from the
optimal bin with weight ≤ 7/6, in which at most two
of i-bin packed with the bin containing the item of
type m. Thus, the average can be calculated as fol-
lows:

2 5 1 7 11* *
3 4 3 6 9

MW ≤ + = .

2. If i ∈ m

mtG = ∅ and j ∈ t
ttG ≠ ∅, then by Property 1, an

item of type t packed with j in the FFD solution must
come from the optimal bin with weight ≤ 7/6. Thus,
the average can be calculated as follows:

2 5 1 7 11* *
3 4 3 6 9

MW ≤ + = .

3. If i ∈ m

mtG ≠ ∅ and j ∈ t
ttG ≠ ∅, then the average cannot

be greater than 11/9. Since there must exist an item k
∈ m

ttG with weight 7/6 packed with i and j and the non-
G bins by at most the proportion of 2:2:2:1, respec-
tively. Thus, the average can be calculated as follows:

4 5 3 7 17 11* *
7 4 7 6 14 9

MW ≤ + = < .

4. If i ∈ m

mtG =∅ and j ∈ t
ttG = ∅, then WM ≤ 7/6.

Thus, we have that

*115 .
9

Hz z− ≤

*11 5.
9

Hz z≤ +

 The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique 131

*
*

()

() 11 .
9()lim

H

z L

z L
z L→ ∞

≤

3.4.3 If 1/6 < sn ≤ 1/5, then zH(L) ≤ 11/9 z* (L)
According to the FFD rule, an item of type G will

be packed with one or two smaller items, two items of
item type p2, two items of item type n2 with one item of
type p3 or smaller, three items of type p3, three items of
item type n3 with a smaller item, four items of type p4,
four items of item type n4 with one item of type p5 and
five items of type p5; except the transition bins with the
total weight ≤ 7. Each of the remaining FFD bins has
weight ≥1. According to the size and weight in Table 3,
we solve the integer program, and get the result as fol-
lows:

1. If there is no G item in a bin, then WM ≤ 71/60 and J*

= (p3, p4, 3p5) or (m, 4t).
2. If there is a G item in a bin, then WM ≤ 83/60 and J* =

(G, p3, p4) or (G, m, t).

Similar to the previous case, consider the following

weight adjustments:

1. For i ∈ m
mtG , W(J*) ≤ 83/60-17/15+1 = 5/4.

2. For i ∈ mt
mtG , W(J*) ≤ 83/60-4/3+1 = 21/20.

3. For i ∈ tt
mtG , W(J*) ≤ 83/60-5/4+1 = 17/15.

4. For i ∈ t
ttG , W(J*) ≤ 13/10-21/20+1 = 5/4.

5. For i ∈ m
ttG , W(J*) ≤ 13/10-17/15+1 = 7/6.

6. For i ∈ tt
ttG , W(J*) ≤ 13/10-5/4+1 = 21/20.

Table 3. Summary of item sizes and weight for

1/6 < sn ≤ 1/5.

Items Types Range of Item Sizes Occupied Space
G (1/2, 2/3] 4/5
p2 ((1-sn)/2, 1/2] 1/2
n2 (1/3, (1-sn)/2) 2/5
p3 ((1-sn)/3, 1/3] 1/3
n3 (1/4, (1-sn)/3] 4/15
p4 [(1-sn)/4, 1/4] 1/4
n4 (1/5, (1-sn)/4] 1/5
p5 [sn, 1/5] 1/5

Similarly, we consider the following possibilities:

1. If i ∈ m
mtG ≠ ∅ and j ∈ t

ttG = ∅, then an item of type m
packed with i in the FFD packing must come from the
optimal bin with weight ≤ 71/60, in which at most one
of i-bin packed with the bin containing the item of
type m. Thus, the average can be calculated as fol-
lows:

1 5 1 71 73 11* *
2 4 2 60 60 9

MW ≤ + = < .

2. If i ∈ m

mtG = ∅ and j ∈ t
ttG ≠ ∅, then by Property 1, an

item of type t packed with j in the FFD solution must
come from the optimal bin with weight ≤ 71/60. Thus,
the average can be calculated as follows:

1 5 1 71 73 11* *
2 4 2 60 60 9

MW ≤ + = < .

3. If i ∈ m

mtG ≠ ∅ and j ∈ t
ttG ≠ ∅, then the average cannot

be greater than 11/9. Since there must exist an item k
∈ m

ttG with weight 7/6 packed with i and j and the non-
G bins by at most the proportion of 2:2:2:1, respec-
tively. Thus, the average can be calculated as follows:

4 5 2 7 1 71 73 11* * *
7 4 7 6 7 60 60 9

MW ≤ + + = < .

4. If i ∈ m

mtG =∅ and j ∈ t
ttG = ∅, then WM ≤ 71/60.

Thus, we have that

*737 .
60

Hz z− ≤

*73 7.
60

Hz z≤ +

*
*

()

() 73 .
60()lim

H

z L

z L
z L→ ∞

≤

From all cases, there is no list L that violates Theo-

rem 1. This completes the proof.

4. CONCLUSION

In the past, the asymptotic worst-case ratio of heu-
ristics for the bin packing problem (BPP) has been pro-
ved to show the quality of those heuristics. The First Fit
Decreasing (FFD) is one of the algorithms that its as-
ymptotic worst-case ratio equals to 11/9. Many resear-
chers prove the asymptotic worst-case ratio by using the
weighting function in a lengthy format. In this study, we
shorten the proof from two ideas. First, the occupied
space in a bin is more than the size of the item. Second,
the occupied space in the optimal solution is less than
occupied space in the FFD solution. The occupied space
is equivalent to the weighting function. The objective is
to determine the maximum occupied space of the heuris-
tics by using integer programming with a limited num-
ber of variables and constraints. Then, the maximum
ratio is derived by matching items case by case as shown
in previous section.

ACKNOWLEDGMENT

The author would like to thank Dr. Lap Mui Ann

132 Pornthipa Ongkunaruk

Chan who is the author advisor for her thoughtful sug-
gestion while the author was studying at Virginia Poly-
technic Institute and State University. This research is
extended from the author dissertation.

REFERENCES

Baker, B. (1983), A new proof for the first fit decreasing
bin-packing algorithm, Journal of Algorithms, 6, 49-
70.

Bramel, J. and Simchi-Levi, D. (2001), The Logic of Lo-
gistics: Therory, Algorithms, and Applications for
Logistics Management, Springer, New York.

Coffman, Jr. E., Garey, M., and Johnson, D. (1997), Ap-
proximation Algorithms for NP-Hard Problems.
PWS Publishing Company, Massachusetts.

Friesen, D. and Langston, M. (1991), Analysis of a
compound bin packing algorithm, SIAM Journal
Discrete Mathematics, 4, 61-79.

Garey, M. and Johnson D. (1979), Computers and In-
tractability: A Guide to the Theory of NP-Comple-
teness, W. H. Freeman and Company, New York.

Johnson, D. (1973), Near-optimal bin packing algori-
thms, PhD thesis, MIT, Cambridge, Massachusetts,
June.

Johnson, D., Demers, A., Ullman, J., Garey, M., and Gra-
ham, R. (1974), Worst-case performance bounds for
simple one-dimensional packing algorithms, SIAM
Journal on Computing, 3, 299-325.

Ongkunaruk, P. (2005), Asymptotic worst-case analyses
for the open bin packing problem. PhD Dissertation,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, December.

Yue, M. (1991), A simple proof of the inequality FFD
(L)≤ 11/9 OPT (L) + 1 ∀ L for the bin-packing al-
gorithm, ACTA Mathematicae Applicatae Sinica, 7,
321-331.

APPENDIX

An integer program for 1/5 < sn ≤ 1/4 as the oc-
cupied space and sizes of items in Table 2.

First, if sn = 1/4, then LS(4) = {1/2+1/2ε, (1-1/4)/2
+1/2ε, 1/3+1/4ε, (1-1/4)/3+1/2ε, 1/4+1/8ε, 1/4} ={25/28,

19/28, 33/96, 13/48, 49/192, 1/4}, where ε = 24. The
integer program is as follows:

2 2 3 3 4

3 1 1 1 1 1max
4 2 3 3 4 4G p n p n px x x x x x+ + + + +

2 2 3 3 4

25 19 33 13 49 1. . 1
48 48 96 48 192 4G p n p n ps t x x x x x x+ + + + ≤

2 2 3 3 4
or 100 96 66 52 49 48 192G p n p n px x x x x x+ + + + + ≤

2 2 3 3 4
, , , , , 0, integerG p n p n px x x x x x ≥

Next, if sn = 1/5+1/2δ = 17/80, where δ = 40. Then,

LS(4) = {1/2 + 1/2ε, (1-17/80)/2 + 1/2ε, 1/3 + 1/4ε, (1-
17/80)/3 + 1/2ε, 1/4 + 1/8ε, 17/80} = {81/160, 65/160,
163/480, 66/240, 81/320, 17/80}, where ε = 40. Then,
the constraint becomes

2 2 3 3 4

486 390 326 264 243 204 960G p n p n px x x x x x+ + + + + ≤

An integer program for 1/6 < sn ≤ 1/5, as the oc-

cupied space and sizes of items in Table 3.
First, if sn = 1/5, then LS(5) = {1/2+1/2ε, (1-1/5)/2

+ 1/2ε, 1/3 + 1/4ε, (1-1/5)/3 + 1/2ε, 1/4 + 1/8ε, (1-1/5)/4
+ 1/2ε, 1/5 + 1/16ε, 1/5} = {242/480, 194/480, 161/480,
130/480, 241/960, 98/480, 385/1920, 1/5}, where ε =
120. The integer program is as follows:

2 2 3 3 4 4 5

4 1 2 1 4 1 1 1max
5 2 5 3 15 4 5 5G p n p n p n px x x x x x x x+ + + + + + +

2 2 3 3 4

242 194 161 130 241 98. .
480 480 480 480 960 480G p n p n ps t x x x x x x+ + + + +

4 5

385 1 1
1920 5n px x+ + ≤

2 2 3 3 4
or 968 766 644 520 482 392G p n p n px x x x x x+ + + + +

4 5
385 384 1920n px x+ + ≤

2 2 3 3 4 4 5
, , , , , , , 0, integerG p n p n p n px x x x x x x x ≥

Next, if sn = 1/6+1/2δ = 7/40, where δ = 60. Then,

LS(5) = {1/2 + 1/2ε, (1-7/40)/2 + 1/2ε, 1/3 + 1/4ε, (1-7/
40)/3 + 1/2ε, 1/4 + 1/8ε, (1-1/5)/4 + 1/2ε, 1/5 + 1/16ε,
7/40}, where ε = 60. Then, the constraint becomes

2 2 3 3 4

488 404 324 272 242 206G p n p n px x x x x x+ + + + +

4 5
193 168 960n px x+ + ≤

