DOI QR코드

DOI QR Code

Reduction of Visceral and Body Fats in Mice by Supplementation of Conjugated Linoleic Acid with γ-Oryzanol

Conjugated linoleic acid와 γ-oryzanol 혼합물의 생쥐 체지방 및 복부지방 감소 효과

  • Byeon, Jae-Il (Department of Biomaterial Technology) ;
  • Ohr, Tae-Woo (Division of Applied Life Science (BK21), and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Young-Suk (Division of Applied Life Science (BK21), and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Moon, Yeon-Gyu (Division of Applied Life Science (BK21), and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Cherl-Woo (HK Biotech Co., Ltd.) ;
  • Kim, Jeong-Ok (HK Biotech Co., Ltd.) ;
  • Ha, Yeong-Lae (Department of Biomaterial Technology, Division of Applied Life Science (BK21), and Institute of Agriculture and Life Science)
  • 변재일 (경상대학교 생물소재공학과) ;
  • 오태우 (경상대학교 응용생명과학부, 농업과학연구원) ;
  • 김영숙 (경상대학교 응용생명과학부, 농업과학연구원) ;
  • 문연규 (경상대학교 응용생명과학부, 농업과학연구원) ;
  • 박철우 ((주)HK바이오텍) ;
  • 김정옥 ((주)HK바이오텍) ;
  • 하영래 (경상대학교 생물소재공학과 응용생명과학부(BK21), 농업과학연구원)
  • Published : 2008.09.30

Abstract

The synergistic effect of conjugated linoleic acid (CLA) and $\gamma$-oryzanol (OZ) on the reduction of visceral and body fats was investigated in mice. Female ICR mice, 10 weeks of age, were acclimated for one week and then randomly divided into 5 treatment groups by body weights: Control (70 ${\mu}l$ olive oil + 30 ${\mu}l$ CLA), CLA-OZ 1 (70 ${\mu}l$ olive oil + 30 ${\mu}l$ CLA + OZ 0.5 mg), CLA-OZ 2 (70 ${\mu}l$ olive oil + 30 ${\mu}l$ CLA + OZ 1.0 mg), OZ (100 ${\mu}l$ olive oil + OZ 1.0 mg), and Olive oil (100 ${\mu}l$ olive oil). Samples were daily intubated, p.o., for 4 weeks. Food and water were ad libitum. Four weeks later, mice were sacrificed by neck dislocation, followed by measuring whole body weight, empty carcass weight (ECW), which is weight without organs and visceral fats, visceral fats, body fats and protein content. Mice treated with CLA (control) sample maintained significantly, p<0.05, lower whole body weight, ECW, visceral and body fats, relative to mice treated with olive oil sample, indicating that CLA reduces the visceral and body fats. The CLA-OZ 1 treatment significantly reduced, p<0.05, visceral and body fats as compared to OZ treatment, but not significantly different from control treatment.Meanwhile, CLA-OZ 2-treated mice maintained significantly, p<0.05, lower visceral and body fats than control and OZ-treated mice. Protein contents in mice were not affected by any other treatments. These results suggest that OZ enhanced the reduction of visceral and body fats in mice by CLA.

Conjugated linoleic acid (CLA)와 $\gamma$-oryzanol (OZ) 혼합물의 mouse 체지방 및 복부지방 감소에 관한 연구를 하였다. Female ICR mice (10주 령)을 몸무게 차이가 없도록 Control (70 ${\mu}l$ olive oil + 30 ${\mu}l$ CLA), CLA-OZ 1 (70 ${\mu}l$ olive oil + 30 ${\mu}l$ CLA + 0.5 mg OZ), CLA-OZ 2 (70 ${\mu}l$ olive oil + 30 ${\mu}l$ CLA + 1.0 mg OZ), OZ (100 ${\mu}l$ olive oil + 1.0 mg OZ) 및 Olive oil (100 ${\mu}l$ olive oil)로 구분하였다. 처리시료는 매일 4주간 경구투여 하였고 식이와 물은 자유롭게 먹게 하였다. 시료처리 4주 후에 mice의 몸무게를 달고 탈골법으로 sacrifice하여 전체몸무게, 복부지방 무게, 장기와 복부지방을 제거한 나머지 부분 무게 (empty carcass weight: ECW)를 측정하였다. CLA (control) 처리는 olive oil 처리에 비해 유의성 있게 몸무게, ECW, 복부지방 및 체지방을 감소시켜 CLA가 복부지방 및 체지방을 감소시킴을 알 수 있었다. CLA-OZ 1 처리는 OZ 처리에 비해서는 복부지방 및 체지방을 유의성 (p<0.05) 있게 감소시켰으나 CLA (control) 처리에 비해서는 유의성이 없었다. 또한 CLA-OZ 2 처리는 control 처리 및 OZ 처리에 비해 복부지방 및 체지방을 유의성 (p<0.05) 있게 감소시켰다. 이 결과는 CLA와 OZ를 혼합하여 처리한 mice에서 이들을 각각 단독으로 처리한 mice에서보다 복부지방 및 체지방이 많이 감소되어 OZ가 CLA의 지방감소 작용에 상승효과가 있음을 의미한다.

Keywords

References

  1. Asuka, A., K. Kazunori, O. K. Shihoko, K. Naoko, G. Chikage, S. Hiroe, I. Toshio, Y. Yoshie, T. Kentaro and S. Michihiro. 2003. Metabolic effects of dietary conjugated linoleic acid (CLA) isomers in rats. Nutr. Res. 23, 1691-1701. https://doi.org/10.1016/j.nutres.2003.08.004
  2. Belury, M. A., S. Y. Moya-Camarena, K. L. Liu and J. P. Vanden HeuveI. 1997. Dietary conjugated linoleic acid induces peroxisome-specific enzyme accumulation and ornithine decarboxylase activity in mouse liver. J. Nutr. Biochem. 8, 579-584. https://doi.org/10.1016/S0955-2863(97)00093-4
  3. Berger, A, D. Rein, A Schafer, I. Monnard, G. Gremaud, P. Lambelet and C. Bertoli. 2005. Similar cholesterol-lowering properties of rice bran oil, with varied ${\gamma}$-oryzanol, in mildly hypercholesterolemic men. Eur. J. Nutr. 44, 163-173. https://doi.org/10.1007/s00394-004-0508-9
  4. Blankson, H., J. A Stakkestad, H. Fagertun, E. Thom, J. Wadstein and O. Gudmundsen. 2000. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 130, 2943-2948.
  5. Bruni, J. 1988. Monograph on Gamma Oryzanol: The facts. pp. 1-62, Claudell Publishers, Houston, TX.
  6. Choi, Y., Y. C. Kim, Y. B. Han, Y. Park, M. W. Pariza and J. M. Ntambi. 2000. The trans-10, cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase I gene expression in 3T3-L1 in adipocytes. J. Nutr. 130, 1920-1924.
  7. Chopra, R. K. 2006. Synergistic conjugated linoleic acid (CLA) and carnitine combination. Patent number, 2006/0041017 A1 (US).
  8. Christie, W. W. 1982. Lipid analysis. pp. 22-23, 2nd edition, Pergamon Press. Headington Hill Hall, Oxford.
  9. Cockeril, D. C. and L. R. Bucci. 1987. Increase in muscle girth and decreases in body fat associated with a nutritional supplemental program. Chirop. Sports Med. 1, 73-76.
  10. Evans, M., C. Geigerman, J. Cook, L. Curtis, B. Kuebler and M. McIntosh. 2000. Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids 35, 899-910. https://doi.org/10.1007/S11745-000-0599-6
  11. Gaullier, J. M., J. Halse, K. Hoye, K. Kristiansen, H. Fagertun, H. Vik and O. Gudmundsen. 2004. Conjugated linoleic acid supplementation for 1 y reduces body fats mass in healthy overweight humans. Am. J. Clin. Nutr. 79, 1118-1125.
  12. Ha, Y. L., N. K. Grimm and M. W. Pariza. 1987. Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8, 1881-1887. https://doi.org/10.1093/carcin/8.12.1881
  13. Ha, Y. L., N. K. Grimm and M. W. Paliza. 1989. Newly recognized anticarcinogenic fatty acids: Identification and quantification in natural and processed cheeses. J. Agric. Food Chem. 37, 75-81. https://doi.org/10.1021/jf00085a018
  14. Ha Y. L., J. O. Kim, C. W. Park and J. I. Byeon, 2008. Composition for reducing body fat. Patent number 10-0809411 (Korea).
  15. Ha, Y. L., J. M. Storks on and M. W. Pariza. 1990. Inhibition of benzo[a]pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res. 50, 1097-1101.
  16. Kang, K., W. Liu, K. J. Albright, Y. Park and M. W. Pariza, 2003. Trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR gamma expression. Biochem. Biophys. Res. Commun. 303, 795-799. https://doi.org/10.1016/S0006-291X(03)00413-3
  17. Laura, N. M., M. K. Marjukka, A. M. Lampi and P. Vieno. 2005. Antioxidant activity of steryl ferulate extracts from rye and wheat bran. J. Agric. Food Chem. 53, 2503-2510. https://doi.org/10.1021/jf048051t
  18. Lee, S. H, H. K. Chun, H. J. Park and Y. S. Lee. 2004. Supplementary effect of r-oryzanol on lipid metabolism in diabetic KK mice. Korean J. Nutr. 37, 347-351
  19. Lee, K. N., D. Kritchevsky and M. W. Pariza. 1994. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 108, 19-25. https://doi.org/10.1016/0021-9150(94)90034-5
  20. Lichtenstein, A. H, L. M. Ausman, W. Carrasco, L. J. Gualtieri, J. L. Jenner, J. M. Ordova, R. J. Nicolsi, B. R. Goldin and E. J. Schaefer. 1994. Rice bran oil consumption and plasma lipid levels in moderately hypercholesterolemic humans. Arterios, Throm. 14, 549-556. https://doi.org/10.1161/01.ATV.14.4.549
  21. Lilitchan, S., C. Tangprawat, K. Aryusuk, S. Krisnangkura, S. Chokmoh and K. Krisnangkura. 2008. Partial extraction method for the rapid analysis of total lipids and ${\gamma}$-oryzanol contents in rice bran. Food Chem. 106, 752-759 https://doi.org/10.1016/j.foodchem.2007.06.052
  22. Martin, J. C., S. Gregore, M. H Siess, M. Genty, J. M. Chardigny, O. Bordeaux, P. Juaneda and J. L. Sebedio. 2000. Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats. Lipids 35, 91-98. https://doi.org/10.1007/s11745-000-0499-9
  23. Moloney, F., T. P. Yeow, A. Mullen, J. J. Nolan and H M. Roche. 2004. Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 80, 887-895.
  24. Nobuyo, T. K., M. Takahashi, K. Taneumra, H. J. Kim, T. Tange, H. Okuyama, M. Kasai, S. Ikemoto and O. Ezaki. 2000. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49, 1534-1542. https://doi.org/10.2337/diabetes.49.9.1534
  25. Ohnuki, K., S. Haramizu, K. Oki, K. Ishihara and T. Fushiki. 2001. A single oral administration of conjugated linoleic acid enhanced energy metabolism in mice. Lipids 36, 583-587. https://doi.org/10.1007/s11745-001-0760-2
  26. Park, Y., K. J. Albright, W. Liu, J. M. Storkson, M. E. Cook and M. W. Pariza. 1997. Effect of conjugated linoleic acid on body composition in mice. Lipids 32, 853-858. https://doi.org/10.1007/s11745-997-0109-x
  27. Park, S. J., C. W. Park, S. J. Kim, J. K. Kim, Y. R. Kim, K. A. Park, J. O. Kim and Y. L. Ha. 2002. Methylation methods for the quantitative analysis of conjugated linoleic acid (CLA) isomers in various lipid samples. J. Agric. Food Chem. 50, 989-996. https://doi.org/10.1021/jf011185b
  28. Park, Y. and M. W. Pariza. 2007. Mechanisms of body fats modulation by conjugated linoleic acid (CLA). Food Res. Int. 40, 311-323. https://doi.org/10.1016/j.foodres.2006.11.002
  29. Rong, N., L. M. Ausman and R. J. Niclosi. 1997. Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids 32, 303-309. https://doi.org/10.1007/s11745-997-0037-9
  30. Rukmini, C. 2000. Bioactives in rice bran and rice bran oil. pp. 213-239, In Bidlack W. R.,Omaye S. T., Meskin M. S., Topham D. K. W. (Eds.), Phytochemicals as Bioactive Agents, CRC Press, NY.
  31. Seetharamiah, G. S. and N. Chandrasekhara. 1990. Effect of gamma oryzanol on cholesterol absorption and biliary and fecal bile acids in rats. Ind. J. Med. Res. 92, 471-475.
  32. Shah, V. K. G., H. Dunstan and W. Taylor. 2006. An efficient diethyl ether-based soxhlet protocol to quantify fecal sterols from catchment waters. J. Chrom. A 1108, 111-115. https://doi.org/10.1016/j.chroma.2005.12.084
  33. Snedecor, G. W. and W. G. Cochran. 1980. Statistical methods. pp. 233-236, Seventh edition. The Iowa State University Press. Iowa, USA.
  34. Takahashi, Y., M. Kushiro, K. Shinohara and T. Ide. 2003. Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid. Biochim. Biophys. Acta 1631, 265-273. https://doi.org/10.1016/S1388-1981(03)00038-6
  35. Terpstra, A. H., A. C. Beynen, H. Everts, S. Kocsis, M. B. Katan and P. L. Zock. 2002. The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J. Nutr. 132, 940-945.
  36. Wang, Y. W. and P. J. H. Jones. 2004. Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int. J. Obesity 28, 941-955. https://doi.org/10.1038/sj.ijo.0802641
  37. West, D. B., F. Y. Bloom, A. A. Truett and J. P. DeLany. 2000. Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J. Nutr. 130, 2471-2477.
  38. Xu, Z., N. Hua and S. Godber. 2001. Antioxidant activity of tocopherols, tocotrienols, and r-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2' -azobis (2-methylpropionamidine) dihydrochloride. J. Agric. Food Chem. 49, 2077-2081. https://doi.org/10.1021/jf0012852

Cited by

  1. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB vol.2013, 2013, https://doi.org/10.1155/2013/429393