DOI QR코드

DOI QR Code

LiCl에 의해 유도되는 phosphoprotein이 embryonic zebrafish (Danio rerio)의 pigmentation에 미치는 영향

Involvement of a LiCl-Induced Phosphoprotein in Pigmentation of the Embryonic Zebrafish (Danio rerio)

  • 진은정 (원광대학교 자연과학대학 생명과학부) ;
  • Jin, Eun-Jung (Faculty of Biological Sciences, College of Natural Sciences, Wonkwang University) ;
  • Thibaudeau, Giselle (Department of Biological Sciences, Mississippi State University)
  • 발행 : 2008.09.30

초록

Neural crest는 신경계의 발생과정에서 생긴 특정화된 외배엽으로서 말초신경계(peripheral nervous system)의 모든 sensory cells과 fibers, 자율신경계의 대부분의 peripheral cells, unipolar spinal ganglion cell, cranial sensory ganglia, peripheral nerve의 neurolemmal sheath cells, ganglia의 capsule cells, sympathetic ganglia, chromaffin cells, pigment cell 등이 분화한다. Fish의 경우는 melanin을 가지고 있는 melanophores, yellow pigment를 가지고 있는 xanthopores, reflecting platelets를 가지고 있는 iridophores등 3가지의 pigment-producing cell을 가지고 있다. 다양한 pigement들의 deposition, distribution에 의해 Fish와 amphibian에서 볼 수 있는 수많은 color와 pattern이 만들어지게 된다. Embryonic neural crest가 patterning을 연구하기에 아주 좋은 모델임에도 불구하고, choromatophores의 cell-signaling mechanism에 관한 연구는 거의 없는 실정이다. 본 연구에서는 melanosomes의 melanocyt로의 이동기작과 이들의 dentiritic processe를 밝히기 밝히기 위해 phosphorylaion assay와 투과형 전자 현미경(transmission electron microscope)등을 이용한 다양한 실험들을 토대로, Lithium에 의해 유도되는 morphological alteration에 IP cell signaling pathway에 의해 조절되는 단백질의 하나인 55-kDa단백질의 인산화가 중요한 역할을 함을 밝혔다.

The embryonic zebrafish (Danio rerio) is rapidly becoming an important model organism for studies of early events in vertebrate development. Neural crest-derived pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores, and/or iridophores. Cell-signaling mechanisms related to the development of pigmentation and pigment pattern formation remain obscure. In this study, zebrafish embryos were treated with various signaling-related molecules - LiCl (an inositol-phosphatase inhibitor), forskolin (a protein kinase-A activator), a combination of LiCl/forskolin, and LiCl/heparin (an IP3 inhibitor) in order to identify the mechanisms involved in pigmentation. LiCl treatment resulted in ultrastructural and morphological alterations of melanophores. To identify the possible proteins responsible for this ultrastructural and morphological change, phosphorylation patterns in vitro and in vivo were analyzed. LiCl and LiCl/forskolin treatment elicited dramatic increases in the phosphorylation of a 55-kDa protein which was inhibited by heparin treatment. LiCl treatment also induced phosphorylation of a 55-kDa protein in melanophores purified from adult zebrafish. Collectively these results suggest that a LiCl-induced 55-kDa phosphoprotein plays a role in melanophore morphology and ultrastructure and ultimately effects gross pigmentation.

키워드

참고문헌

  1. Bronner-Fraser, M. and M. Garcia-Castro. 2008. Manipulations of neural crest cells or their migratory pathways. Methods Cell Biol. 87, 75-96. https://doi.org/10.1016/S0091-679X(08)00204-5
  2. Dupin, E., G. Calloni, C. Real, A. Goncalves-Trentin and N. M. Le Douarin. 2007. Neural crest progenitors and stem cells. C. R. BioI. 330, 521-529. https://doi.org/10.1016/j.crvi.2007.04.004
  3. Barrallo-Gimeno, A and M. A. Nieto. 2006. Evolution of the neural crest. Adv. Exp. Med. BioI. 589, 235-244. https://doi.org/10.1007/978-0-387-46954-6_15
  4. Minchin, J. E. and S. M. Hughes. 2008. Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest. Dev. BioI. 317, 508-522. https://doi.org/10.1016/j.ydbio.2008.02.058
  5. Quigley, I. K., J. M. Turner, R. J. Nuckels, J. L. Manuel, E. H. Budi, E. L. MacDonald and D. M. Parichy, 2004. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes. Development 131, 6053-6069. https://doi.org/10.1242/dev.01526
  6. Arduini, B. L. and P. D. Henion. 2004. Melanophore sublineage-specific requirement for zebrafish touchtone during neural crest development. Mech. Dev. 121, 1353-1364. https://doi.org/10.1016/j.mod.2004.06.006
  7. Jin, E. J. and G. Thibaudeau. 1999. Effects of lithium on pigmentationin the embryonic zebrafish (Brachydanio rerio). Biochem. et Biophysic. ACTA 1449, 93-99. https://doi.org/10.1016/S0167-4889(98)00176-1
  8. Berridge, M. J. and R. F. Irvine. 1989. Inositol phosphates and cell signalling. Nature 341, 197-203 https://doi.org/10.1038/341197a0
  9. Berridge, M. J., C. P. Downes and M. R. Hanley. 1989. Neural and developmental actions of lithium: a unifying hypothesis. Cell 159, 411-419.
  10. Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. Nature 361, 315-325. https://doi.org/10.1038/361315a0
  11. Busa, W. B. and R. L. Gimlich. 1989. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev. BioI. 132, 315-340. https://doi.org/10.1016/0012-1606(89)90228-5
  12. Maslanski, J. A., L. Leshko and W. B. Busa. 1992. Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science 256, 243-247. https://doi.org/10.1126/science.1314424
  13. Stachel, S. E., D. J. Grunwald and P. Z. Myers. 1993. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish, Development 117, 1261-1274.
  14. Aspengren, S., H. N. Skold, G. Quiroga, L. Martensson and M. Wallin. 2003. Noradrenaline- and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res. 16, 59-64. https://doi.org/10.1034/j.1600-0749.2003.00003.x
  15. Acharya, L. S. and M. Ovais. 2007. Alpha1 and alpha2 adrenoceptor mediated melanosome aggregatory responses in vitro in Oreochromis mossambica (Peters) melanophores. Indian J. Exp. BioI. 45, 984-991.
  16. Kumazawa, T. and R. Fujii. 1984. Concurrent releases of norepinephrine and purines by potassium from adrenergic melanosome-aggregating nerve in Tilapia. Comp. Bioch. Physiol. 78, 263-266. https://doi.org/10.1016/0300-9629(84)90143-9
  17. Kashina, A. S., I. V. Semenova, P. A. Ivanov, E. S. Potekhina, I. Zaliapin and V. I. Rodionov. 2004. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. BioI. 4, 1877-1881.
  18. Thaler, C. D. and L. T. Haimo. 1992. Control of organelle transport in melanophores: regulation of $Ca^{2+}$ and cAMP levels. Cell Motil. Cytoskeleton 22, 175-184. https://doi.org/10.1002/cm.970220305
  19. Rodionov, V. I., F. K. Gyoeva and V. I. Gelfand. 1991. Kinesin is responsible for centrifugal movement of pigment granules in melanophores, Proc. Natl. Acad. Sci. USA 88, 4956-4960. https://doi.org/10.1073/pnas.88.11.4956
  20. Rozdzia, M. M. and L. T. Haimo. 1986. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell 47, 1061-1070. https://doi.org/10.1016/0092-8674(86)90821-4
  21. Muceniece, R., K. Saleniece, U. Riekstina, L. Krigere, G. Tirzitis and J. Ancans. 2007. Betulin binds to melanocortin receptors and antagonizes alpha-melanocyte stimulating hormone induced cAMP generation in mouse melanoma cells. Cell Biochem. Funct. 25, 591-596. https://doi.org/10.1002/cbf.1427
  22. Passeron, T., P. Bahadoran, C. Bertolotto, C. Chiaverini, R. Busca, G. Valony, K. Bille, J. P. Ortonne and R. Ballotti. 2004. Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac2-a and actin association. FASEB J. 18, 989-991.
  23. Huber, W. E., E. R. Price, H. R. Widlund, J. Du, I. J. Davis, M. Wegner and D. E. Fisher. 2003. A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. BioI. Chem. 278, 45224-45230. https://doi.org/10.1074/jbc.M309036200
  24. Thaler, C. D. and L. T. Haimo. 1990. Regulation of organelle transport in melanophores by calcineurin. J. Cell BioI. 111, 1939-1948. https://doi.org/10.1083/jcb.111.5.1939
  25. Tar, K., C. Csortos, I. Czikora, G. Olah, S. F. Ma, R. Wadgaonkar, P. Gergely, J. G. Garcia and A. D. Verin. 2006. Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. J. Cell Biochem. 98, 931-953. https://doi.org/10.1002/jcb.20829
  26. Chan, W., R. Kozma, Y. Yasui, M. Inagaki, T. Leung, E. Manser and L. Lim. 2002. Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur. J. Cell Biol. 81, 692-701. https://doi.org/10.1078/0171-9335-00281
  27. Sayas, C. L., J. Avila and F. Wandosell. 2002. Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim. Biophys. Acta. 1582, 144-153. https://doi.org/10.1016/S1388-1981(02)00149-X
  28. Kural, C., A. S. Serpinskaya, Y. H. Chou, R. D. Goldman, V. I. Gelfand and P. R. Selvin. 2007. Tracking melanosomes inside a cell to study molecular motors and their interaction. Proc. NatI. Acad. Sci. USA. 104, 5378-5382. https://doi.org/10.1073/pnas.0700145104
  29. Aspengren, S. and M. Wallin. 2004. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores. Pigment Cell Res. 17, 295-301. https://doi.org/10.1111/j.1600-0749.2004.00150.x