DOI QR코드

DOI QR Code

Conversion of Ginsenoside Rd to Compound K by Crude Enzymes Extracted from Lactobacillus brevis LH8

Lactobacillus brevis LH8이 생산하는 효소에 의한 Ginsenoside Rd의 Compound K로의 전환

  • Quan, Lin-Hu (Korean Ginseng Center Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Liang, Zhiqi (Korean Ginseng Center Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Ho-Bin (Korean Ginseng Center Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Se-Hwa (Korean Ginseng Center Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Se-Young (Korean Ginseng Center Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Noh, Yeong-Deok (Korean Ginseng Center Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
  • 전림호 (경희대학교 고려인삼명품화 사업단 및 인삼유전자원소재은행) ;
  • 양지제 (경희대학교 고려인삼명품화 사업단 및 인삼유전자원소재은행) ;
  • 김호빈 (경희대학교 고려인삼명품화 사업단 및 인삼유전자원소재은행) ;
  • 김세화 (경희대학교 고려인삼명품화 사업단 및 인삼유전자원소재은행) ;
  • 김세영 (경희대학교 고려인삼명품화 사업단 및 인삼유전자원소재은행) ;
  • 노영덕 (경희대학교 고려인삼명품화 사업단 및 인삼유전자원소재은행) ;
  • 양덕춘 (경희대학교 고려인삼명품화 사업단 및 인삼유전자원소재은행)
  • Published : 2008.09.30

Abstract

Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides from the gastrointestinal tract is extremely low, when ginseng is orally administered. In order to improve absorption and its bioavailability, conversion of major ginsenosides into more active minor ginsenoside is very much required. Here, we isolated lactic acid bacterium (Lactobacillus brevis LH8) having ${\beta}-glucosidase$ activity from Kimchi. Bioconversion ginsenoside Rd by this bacterium in different temperatures was investigated. The maximum activities of crude enzymes precipitated by ethanol were shown in $30^{\circ}C$ and then gradually decreased. In order to compare the effect of pH, the crude enzymes of L. brevis LH8 were mixed in 20mM sodium phosphate buffer (pH 3.5 to pH 8.0) and reacted ginsenoside Rd. Ginsenoside Rd was almost hydrolyzed between pH 6.0 and pH 12.0, but not hydrolyzed under pH 5.0 and above pH 13.0. Ginsenoside Rd was hydrolyzed after 48 h incubation, whereas ginsenoside F2 appeared from 48 h to 72 h, and ginsenoside Rd was almost converted into compound K after 72 h.

인삼사포닌 ginsenoside는 인삼의 주요한 약리성분으로 인삼을 경구투여 시 major 사포닌의 생체 내에서의 흡수는 매우 낮아 인삼사포닌의 약효를 증대시키기 위해서 기존에 많이 존재하는 major 사포닌을 상대적으로 흡수도 잘 되며 약효도 더 뛰어난 minor 사포닌으로의 전환이 요구된다. 본 연구는 김치에서 분리한 ${\beta}-glucosidase$ 활성균주 L. brevis LH8이 분비하는 효소를 이용하여 ginsenoside Rd를 compound K로 전환시켰다. L. brevis LH8의 효소액은 반응 온도 $30^{\circ}C$에서 효소활성이 가장 좋았고 $35^{\circ}C$이상에서는 활성이 급격히 저하되었으며, pH $6.0{\sim}12.0$ 사이에서 효소활성이 가장 좋았고, pH 5.0 이하 및 pH 13.0 이상에서는 활성도가 떨어지는 것을 관찰할 수 있었다. 또한 ginsenoside Rd는 반응 48시간부터 ginsenoside F2로 전환되기 시작하였으며, 반응 72 시간 이후에는 대부분 compound K로 전환되었다.

Keywords

References

  1. Benishin, C. G. : Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings. Neurochem. Int. 21(1), 1-5 (1992) https://doi.org/10.1016/0197-0186(92)90061-U
  2. Saito, H. and Nishiyama, N. : Effect of ginseng and its saponins on experimental amnesis in mice and on cell cultures of neurons. p. 92-98. In: Proc. 5th Int'l. Ginseng Symp. Seoul, Korea. (1988)
  3. Kikuchi, Y., Sasa, H., Kita, T., Hirata, J. and Tode, T. : Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside-Rh2 and adjuvant effects of cisplatin in vivo. Anticancer Drugs(England). 2(1), 63-67 (1991) https://doi.org/10.1097/00001813-199102000-00009
  4. Singh, V. K., Agarwal, S. S. and Gupta, B. M. : Immunomodulatory activity of Panax ginseng extract. p. 225-232. In: Proc. 4th Int'l. Ginseng Symp. Seoul, Korea. (1984)
  5. Huo, Y. and Chen. Y. : The effect of Panax ginseng extract (GS) on insulin and corticosteroid receptors. J. Traditional Chinese Medicine. 8(4), 293-295 (1998)
  6. Liu, X., Cui, Y. and Yang, L. :Roles of glycosidase in drug discovery and development. Tian Ran Chan Wu Yan Jiu Yu Kai Fa. 17(2), 223-228 (2005)
  7. Akao, T. : Metabolic activation of crude drug components by intestinal bacterial enzymes. Med. Pharm. Soc. 9, 1-13 (1992)
  8. Dreessen, M., Eyssen, H. and Lemli. J. : The metabolism of sennosides A and B by the intestinal microflora: in vitro and in vivo studies on the rat and the mouse. J. Pharm. Pharmacol. 33(10), 679-681 (1981) https://doi.org/10.1111/j.2042-7158.1981.tb13903.x
  9. Shin, J. E., Park, E. K., Kim, E. J., Hong, Y. H., Lee, K. T. and Kim, D. H. : Cytotoxicity of compound K (IH-901) and ginsenoside Rh2, Main biotransformants of ginseng saponins by bifidobacteria, against some tumor cells. Ginseng Res. 27, 129-134 (2003) https://doi.org/10.5142/JGR.2003.27.3.129
  10. Zhou, W., Feng, M. Q., Li, J. Y. and Zhou, P. : Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K. Journal of Asian Natural Products Research. 8(6), 519-527 (2006) https://doi.org/10.1080/10286020500208600
  11. Bae, E. A., Kim, N. Y., Han, M. J., Choo, M. K. and Kim, D. H. :Transformation of ginsenoside to compound K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13(1), 9-14 (2003)
  12. Chi, H., Kim, D. H. and Ji, G. E. : Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol Pharm Bull. 28(11), 2102-2105 (2005) https://doi.org/10.1248/bpb.28.2102
  13. Cheng, L. Q., Kim, M. K., Lee, J. W. and Yang, D. C. : Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol. Lett. 28, 1121-1127 (2006) https://doi.org/10.1007/s10529-006-9059-x
  14. Karikura, M., Miyase,T., Tanizawa, H., Taniyama, T. and Takino, Y. : Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and Rb2 in the digestive tract of rats. Chem. Pharm. Bull. (Tokyo). 39(9), 2357-2361 (1991) https://doi.org/10.1248/cpb.39.2357
  15. Takino, Y. : Studies on the pharmacodynamics of ginsenoside-Rg1, -Rb1 and -Rb2 in rats. Yakugaku Zasshi. 114(8), 550-564 (1994) https://doi.org/10.1248/yakushi1947.114.8_550
  16. Chi, H. and Ji. G. E. : Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett. 27(11), 765-771 (2005) https://doi.org/10.1007/s10529-005-5632-y
  17. Park, S. Y., Bae, E. A., Sung, J. H., Lee, S. K. and Kim, D. H. : Purification and characterization of ginsenoside Rb1-metabolizing beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem. 65(5), 1163-1169 (2001) https://doi.org/10.1271/bbb.65.1163
  18. Zhang, C., Yu, H., Bao, Y., An, L. and Jin, F. : Purification and characterization of ginsenoside-beta-glucosidase from ginseng. Chem. Pharm. Bull. 49(7), 795-798 (2001) https://doi.org/10.1248/cpb.49.795
  19. Wang, B. X., Cui, J. C., Liu, A. J. and Wu, S. K. : Studies on the anti-fatigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med. 3(2), 89-94 (1983)
  20. Kim, S. D. and Seu, J. H. : Enzymatic properties of the convertible enzyme of ginseng aaponin produced from Rhizopus japonicus. Kor. J. App. Microbiol Bioeng. 17(2), 126-130 (1989)
  21. Zhang, D., Liu, Y. P., Yu, H. S., Jin, F. X. and Chen, G. X. : Purification of ginsenoside $\beta$-glucosidase hydrolase and its characteristics. Ying Yong Yu Huan Jing Sheng Wu Xue Bao. 9(3), 259-262 (2003)

Cited by

  1. Inhibitory Effects of Ginseng Extracts on Histamine-release from Rat's Mast Cell vol.24, pp.1, 2011, https://doi.org/10.7732/kjpr.2011.24.1.098
  2. Bioconversion of Ginsenoside Rb1 to Compound K using Leuconostoc lactis DC201 vol.24, pp.6, 2011, https://doi.org/10.7732/kjpr.2011.24.6.712
  3. Optimization of Compound K Production from Ginseng Extract by Enzymatic Bioconversion of Trichoderma reesei vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.570
  4. vol.42, pp.4, 2014, https://doi.org/10.5941/MYCO.2014.42.4.368
  5. Isolation and identification of antiproliferative substances from ginseng fermented using Ganoderma lucidum mycelia vol.24, pp.2, 2015, https://doi.org/10.1007/s10068-015-0074-3
  6. Development and Validation of Analytical Method for Pectolinarin and Pectolinarigenin in Fermented Cirsium setidens Nakai by Bioconversion vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1504
  7. Biotransformation of gypenoside XVII to compound K by a recombinant β-glucosidase vol.38, pp.7, 2016, https://doi.org/10.1007/s10529-016-2094-3
  8. Physicochemical Properties and Fibrinolytic Activity of Ginseng Powder Fermented with <i>Bacillus subtilis</i> Isolated from <i>Cheonggukjang</i> vol.08, pp.08, 2017, https://doi.org/10.4236/ajps.2017.88126
  9. Ginsenoside, Phenolic Acid Composition and Physiological Significances of Fermented Ginseng Leaf vol.39, pp.8, 2010, https://doi.org/10.3746/jkfn.2010.39.8.1194
  10. Quality Characteristics of 4 Year-old Ginseng by Enzymatic Hydrolysis Conditions vol.40, pp.2, 2011, https://doi.org/10.3746/jkfn.2011.40.2.229