Trends in Development and Marketing of Degradable Plastics

분해성 플라스틱의 개발 및 시장 동향

  • Published : 2008.08.01

Abstract

Plastics are comparatively new polymeric materials that are manufactured by chemical synthesis, making them different from natural materials such as wood, paper, stone, metal, and glass. Due to a wide range of properties, including processing capabilities and duration, plastics have become rapidly ubiquitous, being used in all industries, and have improved our quality of life. However, it is true that plastics cause environmental contamination problems that have become important social issues, such as environmental hormone leakage due to incineration or reclamation, difficulty in securing reclamation sites, and deadly poisonous dioxin generated by the incomplete incineration of waste plastic materials. To solve these problems, it is urgent to develop and commercialize degradable plastics that can be stably and conveniently used just as general plastics, and that are easily decomposed by sunlight, soil microbes, and heat generated from reclaimed land after use. This review presents recent worldwide trends in the development and marketing of environmentally degradable plastics.

환경문제가 대두되면서 이미 선진국의 포장재 공급업체들은 소비자의 관심과 재활용 규제가 친환경 포장재 수요를 불러일으킬 것으로 전망하였다. 이러한 수요에 대응하기 위해 옥수수와 같은 식물을 활용해 만든 여러 형태의 바이오 플라스틱을 출시해 왔으며, 국내 업체들에서도 점차 이에 대한 관심을 높여가고 있다. 점차 강화되고 있는 폐기물 부담금과 불안정한 국제 유가를 고려할 때, 바이오 플라스틱은 소비자들의 친환경 제품에 대한 관심과 연결되어 국내 플라스틱 산업의 새로운 활로가 될 것으로 기대된다. 이를 위해서는 비교적 초기단계에 있는 국내 친환경 플라스틱 기술에 대해 기업과 대학에서 활발한 연구가 이루어져야 할 것으로 보인다. 빠르면 2-3년 내에 생분해성 플라스틱을 주원료로 한 도시락 용기, 컵라면 용기 및 각종 상품용 포장용기가 실용화되고, 장기적으로는 폐수내의 중금속 이온 제거제를 비롯하여 생체 의료용제 등과 같은 첨단의 고부가 생명 공학기술을 응용한 다양한 종류의 환경 친화 제품의 출시가 예상되며, 향후 생분해성 플라스틱 산업은 시장 잠재력과 성장성이 무한한 환경 관련 사업으로 평가된다.

Keywords

References

  1. Brown DT. Plastic Waste Management. Marcel Dekker Inc., New York, NY, USA. pp. 1-35 (1993)
  2. Guillet JE. Polymers and Ecological Problems. Plenum Press, New York, NY, USA. pp. 45-60 (1973)
  3. Narayan R. Impact of governmental policies, regulations, standards activities on an emerging biodegradable plastics industry. pp. 261-272. In: Biodegradable Plastics and Polymers. Doi Y, Fukuda K (eds). Osaka, Japan (1993)
  4. Huag JH, Shetty AS, Wang MS. Biodegradable plastics, A review. Adv. Polym. Tech. 10: 23-30 (1990) https://doi.org/10.1002/adv.1990.060100103
  5. Hamid SG, Maadhah AG, Amin MB. Handbook of Polymer Degradation. Marcel Dekker Inc., New York, NY, USA. pp. 219-230 (1992)
  6. Bloembergen S, David J, Geyer D, Gustafson A, Snook J, Narayan R. Biodegradation and composting studies of polymeric materials. pp. 601-609. In: Biodegradable Plastics and Polymers. Doi Y, Fukuda K (eds). Osaka, Japan (1993)
  7. Chung MS, Lee WH, You YS, Kim HY, Park KM. Degradability of multi-degradable HDPE and LDPE food packaging films. Food Sci.Biotechnol. 12: 548-553 (2003)
  8. Jitendra KP, Singh RP. UV-irradiated biodegradability of ethylene-propylene copolymers, LDPE, and I-PP in composting and culture environments. Biomacromolecules 2: 880-885 (2001) https://doi.org/10.1021/bm010047s
  9. Jung BW, Shin CH, Kim YJ, Jang SH, Shin BY. A study on the biodegradability of plastic films under controlled composting conditions. J. Int. Industrial Technol. 27: 107-116 (1999)
  10. Lee SI, Sur SH, Hong KM, Shin YS, Jang SH, Shin BY. A study on the properties of fully bio-photodegradable composite film. J. Int.Industrial Technol. 29: 129-134 (2001)
  11. Ryu KE, Kim YB. Biodegradation of polymers. Polymer Sci. Technol. 9: 464-472 (1998)
  12. Scott G. Photo-biodegradable plastics: their role in the protection of the environment. Polym. Degrad. Stabil. 29: 136-143 (1990)
  13. Shin BY, Lee HB, Cho MH. Photodegradation of HDPE film containing mechanically induced photosensitive groups. Environ. Res. 15: 31- 40 (1995)
  14. Cole MA. Agricultural and Synthetic Polymers. America Chemical Science, New York, NY, USA. pp. 76-90 (1988)
  15. Doane WM. USDA research on starch-based biodegradable plastics. Starch-Starke 44: 292-295 (1992)
  16. Koenig MF, Huang SJ. Biodegradable blends and composites of polycapolactone and starch derivatives. Polymer 36: 1877-1882 (1995) https://doi.org/10.1016/0032-3861(95)90934-T
  17. Na K, Shin EK, Kim YE, Kim DW, Lee KY. Preparation of biodegradable film using polysaccharides. J. Res. Int. Catalysis 20: 117-123 (1998)
  18. ASTM. Annual book of ASTM standards. Standard practice for determining degradation end point in degradable polyethylene and polypropylene using a tensile test (D3826-98). American Society of Testing and Materials, Philadelphia, PA, USA (1998)
  19. ASTM. Annual book of ASTM standards. Standard practice for determining resistance of synthetic polymeric materials to fungi (G21-96). American Society of Testing and Materials, Philadelphia, PA, USA (1996)
  20. Korea Food & Drug Administration. Test method for plastics. Chapter 6. Standards for containers and packaging. pp. 28-60. In: Food Code. Korea (2001)