The Acid-resistant Characteristic of Organic Acid Tolerance Mutant of Leuconostoc paramesenteroides

Leuconostoc paramesenteroides 유기산 내성 변이균주의 내산성 특성

  • Kim, Young-Hwan (Department of Microbial Engineering, Konkuk University) ;
  • Kim, Hee-Zoong (Department of Microbial Engineering, Konkuk University) ;
  • Oh, Kyun-Sik (Department of Microbial Engineering, Konkuk University) ;
  • Kim, Sun-Young (Department of Microbial Engineering, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Bio-Sciences, Konkuk University) ;
  • Kang, Sang-Mo (Department of Microbial Engineering, Konkuk University)
  • 김영환 (건국대학교 미생물공학과) ;
  • 김희중 (건국대학교 미생물공학과) ;
  • 오균식 (건국대학교 미생물공학과) ;
  • 김선영 (건국대학교 미생물공학과) ;
  • 이시경 (건국대학교 응용생물공학과) ;
  • 강상모 (건국대학교 미생물공학과)
  • Published : 2008.08.01

Abstract

To investigate the acid tolerance characteristics of the acid-resistant mutant, Leuconostoc paramesenteroides P-200, as a kimchi starter, this study examine proton permeability, ATPase activity, glycolysis activity, $Mg^{2+}$ release, and membrane fatty acid composition, and compared the data to that of its wild-type, L. paramesenteroides LP-W. In the proton permeability experiment, the LP-W and P-200 strains' average maximum half-time $(t_{1/2})$ values for pH equilibration through the cell membrane were approximately 5.7 and 9.3 min in 150mM KCl solution, and 4.2 and 8.3 min in 3% NaCl solution, respectively. Their values and pH levels for maximal specific ATPase activity showed that P-200 had greater activity than LPW. And the results of pH-dependent glycolysis activity showed that P-200 had greater activity than LP-W. Furthermore, after 2 hr at pH 4.0, LP-W and P-200 had percent magnesium release values of approximately 12% and 34%, respectively. A comparison of their membrane fatty acid compositions indicated that C18 and cyclo-C19 were the major different fatty acids between the two strains, and their contents of C18 and cyclo-C19 were 2.5% and not detected, respectively, in LP-W, and 6.4% and 11.4%, respectively, in P-200. These results indicate that the P-200 strain has significantly improved acid tolerance as compared to its wild type, LP-W.

김치 starter로 개량된 유기산내성 변이균주 L. paramesenteroides P-200이 갖는 강한 내산성에 관한 생리적 성질을 규명하기 위하여 proton 투과도, ATPase 활성, glycolysis 활성, $Mg^{++}$ 해리도, 세포막의 지방산 조성을 야생균주 (LP-W)와 비교 분석하였다. Proton 투과도 설험 결과 150 mM KCl 수용액 및 3% NaCl 수용액에서 변이균주 P-200의 $t_{1/2}$ 최대값이 pH 4.0, 5.0 그리고 6.0에서 모두 야생균주 LP-W 보다 2내지 3분 정도 더 큰 값을 가지며 실제 proton 투과도 실험에서 proton의 평형을 이루는 시간이 LP-W 보다 약 50% 정도 더 길었다. ATPase 활성의 결과에서도 최대 활성은 P-200이 pH 5에서 0.7unit/mg을, LP-W가 pH 6에서 0.6unit/mg을 나타내어, 산성 환경에서 P-200이 LP-W보다 더욱 높은 활성을 유지하였다. 또한 전체 pH 4-7 범위에서 P-200이 야생균주 LP-W 보다 높은 활성을 보였다. 해당작용의 pH 의존성 결과에서는 최대 활성이 P-200은 pH 4에서 97%이었고, LP-W는 pH 5에서 96%이었다 그리고 pH 5를 제외하면 측정한 pH 3-7 범위에서 LP-W에 비하여 P-200이 높은 해당작용 활성을 보였다. $Mg^{++}$ 해리도에 있어서는 pH 4에서 2시간 경과 후 P-200이 LP-W 보다 약 1/3 정도 $Mg^{++}$이 유출되었다. 지방산조성의 경우, LP-W에서 내산성을 증가시키는 $C_{19:0\;cyclo}$은 0%이었으나 P-200의 경우는 11.4%로 크게 증가하였다. 따라서 이상 5가지 내산성특성을 조사한 것 중 지방산조성에서 가장 큰 차이를 보였는데, 무엇보다 $C_{19:0\;cyclo}$가 0%에서 11.4%로 크게 증가하여 이러한 지방산 조성의 변화가 P-200이 LP-W 보다 더 강한 내산성을 가질 수 있었던 것에 가장 크게 기여하였을 것으로 생각되었다.

Keywords

References

  1. Mheen TI, Kwon TW. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450 (1984)
  2. Kim YC, Jung EY, Kim EH, Jung DH, Yi OS, Kwon TJ, Kang SM. Strain improvement of Leuconostoc paramesenteroides as a acid-resistant mutant and effect on kimchi fermentation as a starter. Korean J.Microbiol. Biotechnol. 26: 151-160 (1998)
  3. Gary R, Bender R, Marguis E. Membrane ATPases and acid tolerance of Actinomyces viscosus and Lactobacillus casei. Appl. Environ Microb. 53: 2124-2128 (1987)
  4. Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN. Malolactic fermentation: Electrogenic malate uptake and malate/lactate antiport generate metabolic energe. J. Bacteriol. 173: 6030-6037 (1991) https://doi.org/10.1128/jb.173.19.6030-6037.1991
  5. Chun UH, Park BS, Cho JS. Optimum conditions for the protoplast formation of Lactobacillus plantarum and Leuconostoc mesenteroides. Korean J. Biotechnol. Bioeng. 9: 191-199 (1994)
  6. Poole RK. The isolation of membranes from Bacteria. Biomembrane Protocols 19: 109-122 (1993) https://doi.org/10.1385/0-89603-236-1:109
  7. Kirazov LP, Venkov LG, Kirazov EP. Comparison of the Lowry and the Bradford protein assays as applied for protein estimation of membrane- containing fractions. Anal. Biochem. 208: 44-48 (1993) https://doi.org/10.1006/abio.1993.1006
  8. Graham JM, Higgins JA. Chemical assays for proteins. Biomembrane Protocols 19: 197-202 (1993) https://doi.org/10.1385/0-89603-236-1:197
  9. Bender GR, Sutton SV, Marquis RE. Acid tolerance, protein permeabilities, and membrane ATPases of Oral Streptococci. Infect. Immun. 53: 331-338 (1986)
  10. Sim JH, Kim SK, Baek YJ, Oh TK, Yang HC. Influence of culture conditions on acid tolerance of Lactobacillus casei YIT 9018. Korean J. Microbiol. Biotechnol. 23: 17-23 (1995)
  11. Rizzo AF, Korkeala H, Mononen I. Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of Lactobacilli. Appl. Environ Microb. 53: 2883-2888 (1987)
  12. Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C, Konings WN. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroids. J. Bacteriol. 175: 2178-2185 (1996)
  13. Kobayashi H. Regulation of the cytoplasmic pH in Streptococcus faecalis. J. Biol. Chem. 257: 13246-13252 (1982)
  14. Kim YC, Jung EY, Kim EH, Jung DH, Jung SH, Yi DH, Kwon TJ, Kang SM. Properties of acid tolerance of acid-resistant mutant Leuconostoc mesenteroids which was improved as kimchi starter. Korean J. Microbiol. Biotechnol. 26: 102-109 (1998)
  15. Jos AF, Kamp OD. Dynamics and Biogenesis of Membranes. Springer-Verlag, Berlin, Germany. pp. 343-360 (1990)
  16. Vigh L. The primary signal in the biological perception of temperature. P. Natl. Acad. Sci. USA 90: 9090-9094 (1993)
  17. Durieu I, Abbas-Chorfa F, Drai J, Iwaz J, Steghens J-P, Puget M, Ecochard R, Bellon G. Plasma fatty acids and lipid hydroperoxides increase after antibiotic therapy in cystic fibrosis. Eur. Respir. J. 29: 958-964 (2007) https://doi.org/10.1183/09031936.00000906
  18. Veerkamp JH. Fatty acid composition of Bifidobacterium and Lactobacillus strains. J. Bacteriol. 108: 861-867 (1971)