
East Asian Math. J. 24 (2008), No. 4, pp. 421–429

LIGHTLIKE SUBMANIFOLDS OF INDEFINITE
COSYMPLECTIC MANIFOLDS

Tae Ho Kang and Su Kwan Kim

Abstract. We study invariant lightlike submanifolds and almost contact
CR-lightlike submanifolds of an indefinite cosymplectic manifold.

1. Introduction

In [7], K. L. Duggal and B. Sahin introduced a general notion of con-
tact Cauchy-Riemann (CR) lightlike submanifolds and studied the geometry
of leaves of their distributions. This concept is similar to that of lightlike
CR-submanifolds of indefinite Kaehler manifolds ([6]). But this new class of
submanifolds includes neither invariant submanifolds nor screen real submani-
folds. To include these two subcases they introduced a class, i. e., contact screen
Cauchy-Riemann (SCR) lightlike submanifolds. This is a contact lightlike ver-
sion of the CR-submanifolds ([1]) of a Kaehler manifold. On the other hand,
the odd dimensional counterparts of indefinite Kaehler manifolds are indefi-
nite cosymplectic manifolds. The lightlike hypersurfaces of indefinite Sasakian
(resp. cosymplectic) manifolds are contained in the class of (almost) contact
CR-lightlike submanifolds of indefinite Sasakian (resp. cosymplectic) manifolds
([8], [9]). In this context, we study invariant lightlike submanifolds and obtain
analogous results to those in contact case. In addition, we define an almost con-
tact CR-lightlike submanifold of indefinite cosymplectic manifolds and study
the geometry of leaves of their distributions.

2. Preliminaries

In this section, we recall briefly some results from the general theory of
lightlike submanifolds (cf. [6]). An m-dimensional submanifold M immersed
in a semi-Riemannian manifold (M̄, ḡ) of dimension n + m is called a lightlike
submanifold if it admits a degenerate metric g induced from ḡ whose radical
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distribution Rad(TM) := TM ∩ TM⊥ is of rank r(1 ≤ r ≤ m), where

TM⊥ := ∪x∈M{u ∈ TxM̄ ; ḡ(u, v) = 0,∀v ∈ TxM}.
Let S(TM) be a screen distribution which is a semi-Riemannian complemen-
tary distribution of Rad(TM) in TM , i. e., TM = Rad(TM) ⊥ S(TM),
where the symbol ⊥ denotes the orthogonal direct sum. We consider a screen
transversal vector bundle S(TM⊥), which is a semi-Riemannian complemen-
tary vector bundle of Rad(TM) in TM⊥. Let (M, g, S(TM)) be a lightlike
submanifold of a semi-Riemannian manifold (M̄, ḡ). For any local basis {Ei}
of Rad(TM), there exists a local frame {Ni} of sections with values in the or-
thogonal compelment of S(TM⊥) in [S(TM)]⊥ such that ḡ(Ei, Nj) = δij and
ḡ(Ni, Nj) = 0. It follows that there exists a lightlike transversal vector bundle
ltr(TM) locally spanned by {Ni}.

Let tr(TM) (called a tranaversal vector bundle) be complementary (but not
orthogonal) vector bundle to TM in TM̄ |M . Then we have decompositions.

tr(TM) = ltr(TM) ⊥ S(TM⊥),

T M̄ |M = S(TM) ⊥ {Rad(TM) ⊕ ltr(TM)} ⊥ S(TM⊥)
= TM ⊕ tr(TM).

We note that the lightlike second fundamental forms of a lightlike submanifold
M do not depend on S(TM), S(TM⊥) and ltr(TM).

We say that a submanifold (M, g, S(TM), S(TM⊥)) of M̄ is
Case 1: r-lightlike if r < min{m,n};
Case 2: co-isotropic if r = n < m, S(TM⊥) = {0};
Case 3: isotropic if r = m < n, S(TM) = {0};
Case 4: totally lightlike if r = m = n, S(TM) = {0} and S(TM⊥) = {0}.
It is clear from the decomposition of TM̄ that the Gauss and Weingarten
equations are given by

∇̄XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM),(1)
∇̄XU = −AUX + ∇t

XU, ∀X ∈ Γ(TM), U ∈ Γ(tr(TM)),(2)

where {∇XY,AUX} and {h(X,Y ),∇t
XU} belong to Γ(TM) and Γ(tr(TM)),

respectively. ∇ and ∇t are linear connections on M and on the vector bundle
tr(TM), respectively. Moreover, we have

∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∀X,Y ∈ Γ(TM),(3)

∇̄XN = −ANX + ∇l
XN + Ds(X,N), N ∈ Γ(ltr(TM)),(4)

∇̄XW = −AW X + ∇s
XW + Dl(X,W ), W ∈ Γ(S(TM⊥)).(5)

It is known ([6]) that hl = 0 on Rad(TM). In this point of view, we say
that a lightlike submanifold (M, g, S(TM), S(TM⊥)) of a semi-Riemannian
manifold (M̄, ḡ) is minimal (cf. [2], [7]) if hs = 0 on Rad(TM) and trace h=0,
where trace is written with respect to g restricted to S(TM). This definition
is independent of S(TM) and S(TM⊥), but it depends on the choice of the
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transversal bundle tr(TM) ([2]). Denote the projection of TM on S(TM) by
P̄ . Then, by using (1), (3), (4), (5) and the fact that ∇̄ is a metric connection,
we obtain

ḡ(hs(X,Y ),W ) + ḡ(Y,Dl(X,W )) = g(AW X,Y ),(6)
ḡ(Ds(X,N),W ) = ḡ(N,AW X).(7)

From the decomposition of tangent bundle of lightlike submanifold, we have

∇X P̄ Y = ∇∗
X P̄ Y + h∗(X, P̄Y ),(8)

∇XE = −A∗
EX + ∇∗t

XE,(9)

for X,Y ∈ Γ(TM) and E ∈ Γ(Rad(TM)), where

{∇∗
X P̄ Y,A∗

EX} and {h∗(X, P̄Y ),∇∗t
XE}

belong to Γ(S(TM)) and Γ(Rad(TM)), respectively. It follows that ∇∗ and
∇∗t are linear connections on complementary distributions S(TM) and Rad(TM),
respectively. By using the above equations we obtain

ḡ(hl(X, P̄Y ), E) = g(A∗
EX, P̄Y ),(10)

ḡ(h∗(X, P̄Y ), N) = g(ANX, P̄Y ),(11)

ḡ(hl(X,E), E) = 0, A∗
EE = 0.(12)

In general, the induced connection ∇ on M is not metric connection, since

(13) (∇Xg)(Y,Z) = ḡ(hl(X,Y ), Z) + ḡ(hl(X,Z), Y ),

which is easily obtained by using (3) and the fact that ∇̄ is a metric connection.
However, it is important to note that ∇∗ is a metric connection on S(TM).

3. Invariant Lightlike Submanifolds

An odd dimensional semi-Riemannian manifold (M̄, ḡ) is called an almost
contact metric manifold (cf. [3], [5], [7], [8], [9], [11], [12]) if there are a (1,1)
tensor field φ̄, a vector field ξ, called characteristic vector field and a 1-form η
such that for any vector fields X,Y on M̄ ,

(14) ḡ(φ̄X, φ̄Y ) = ḡ(X,Y ) − ϵη(X)η(Y ),

(15) ḡ(ξ, ξ) = ϵ, ϵ = 1 or ϵ = −1,

(16) φ̄2(X) = −X + η(X)ξ, ḡ(X, ξ) = ϵη(X).

Then (φ̄, ξ, η, ḡ) is called an almost contact metric structure of M̄ . It follows
that

(17) φ̄(ξ) = 0, η ◦ φ̄ = 0, η(ξ) = ϵ.

Also, the almost contact metric structure (φ̄, ξ, η, ḡ) is normal if Nφ̄ + dη⊗ ξ =
0, where Nφ̄ is the Nijenhuis tensor field, which is defined by Nφ̄(X,Y ) =
φ̄2[X,Y ] + [φ̄X, φ̄Y ] − φ̄[φ̄X, Y ] − φ̄[X, φ̄Y ]. Define a 2-form Φ on M̄ by
Φ(X,Y ) = ḡ(X, φ̄Y ). A normal almost contact metric structure (φ̄, ξ, η, ḡ) on
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M̄ is called a cosymplectic structure if dΦ = 0 and dη = 0. It is characterized
by

(18) ∇̄X φ̄ = 0, ∇̄Xη = 0

for any vector field X on M̄ , where ∇̄ is the Levi-Civita connection of ḡ (cf.
[3], [8], [11]). A semi-Riemannian manifold M̄ with a cosymplectic structure
(φ̄, ξ, η, ḡ) is called an indefinite cosymplectic manifold.

Lemma 3.1. For an indefinite cosymplectic manifold M̄ , we have

(19) ∇̄Xξ = 0, ∀X ∈ Γ(TM̄),

where ξ is the characteristic vector field.

Proof. Differentiating φ̄(ξ) = 0, we get φ̄(∇̄Xξ) = 0. Transvecting this with φ̄
and using (16), we complete the proof. ¤

Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of an indefinite cosym-
plectic manifold (M̄, ξ, η, ḡ). For any vector field X tangent to M , we put

(20) φ̄X = φX + FX,

where φX and FX are the tangential and transversal parts of φ̄X, respectively.
Moreover, φ is skew symmetric on S(TM).

It is known ([4]) that if M is tangent to the structure vector field ξ, then
ξ belongs to S(TM). Using this, we say that M is invariant in M̄ if M is
tangent to the structure vector field ξ and

(21) φ̄X = φX, i. e., φ̄X ∈ Γ(TM), ∀X ∈ Γ(TM).

From (1), (17), (18), (19) and (21) we get

(22) ∇Xξ = 0, hl(X, ξ) = 0 and hs(X, ξ) = 0,

(23) h(X,φY ) = φ̄h(X,Y ) = h(φX, Y ), ∀X,Y ∈ Γ(TM).

Remark 3.2. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of an in-
definite cosymplectic manifold M̄ . If M is invariant, then the distributions
Rad(TM) and S(TM) are φ̄-invariant. It follows that distributions S(TM⊥),
ltr(TM) and tr(TM) are also φ̄-invariant. Therefore the aggregate (φ, ξ, η, g)
defined on M forms a singular cosymplectic structure in a sense that the metric
tensor g of M is degenerate. If S(TM) is integrable, then each leaves of S(TM)
admits a cosymplectic structure.

Proposition 3.3. Let (M, g, S(TM), S(TM⊥)) be an invariant lightlike sub-
manifold of an indefinite cosymplectic manifold (M̄, ḡ, φ̄, ξ, η). Then S(TM) is
integrable if and only if

h∗(X,φY ) = h∗(φX, Y ), ∀X,Y ∈ Γ(S(TM)).
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Proof. For an invariant lightlike submanifold M , we put

φX = sX + rX,

where sX ∈ Γ(S(TM)) and rX ∈ Γ(Rad(TM)). Differentiating this, we get
from (8), (18) and (21)

r([X,Y ]) = h∗(X,φY ) − h∗(φY,X),

which completes the proof. ¤

Theorem 3.4. Let (M, g, S(TM), S(TM⊥)) be an invariant lightlike subman-
ifold of codimension two of an indefinite cosymplectic manifold M̄ . Then
Rad(TM) defines a totally geodesic foliation on M .

Proof. Since rank(Rad(TM)) = 2, any X,Y ∈ Γ(Rad(TM)) can be written as
a linear combination of E and φ̄E, respectively, i. e., X = A1E + B1φ̄E, Y =
A2E + B2φ̄E. Thus by direct calculation, using (1) and (3) we obtain

g(∇XY, P̄Z) = ḡ(∇̄XY − h(X,Y ), P̄Z)
= X(ḡ(Y, P̄Z)) − ḡ(Y, ∇̄X P̄Z)

= −ḡ(Y, hl(X, P̄Z))

= −ḡ(A2E + B2φ̄E, hl(A1E + B1φ̄E, P̄Z))

= −A2A1ḡ(E, hl(E, P̄Z)) − A2B1ḡ(E, hl(φ̄E, P̄Z))

−B2A1ḡ(φ̄E, hl(E, P̄Z)) − B2B1ḡ(φ̄E, hl(φ̄E, P̄Z))
= 0,

where the last equality follows from (12). Hence the screen ditribution part of
∇XY vanishes, which means that Rad(TM) defines a totally geodesic foliation.

¤

Theorem 3.5. Let (M, g, S(TM), S(TM⊥)) be an invariant lightlike submani-
fold of codimension two of an indefinite cosymplectic manifold M̄ . Suppose that
(M ′, g′) is a non-degenerate submanifold of M̄ such that M ′ is a leaf of inte-
grable S(TM). Then M is totally geodesic with an induced metric connection
if M ′ is immersed as a submanifold of M .

Proof. Since dim(Rad(TM)) = dim(ltr(TM)) = 2, hl(X,Y ) = A1N + B1φ̄N ,
where A1 and B1 are functions on M . Thus hl(X,E) = 0 if and only if
ḡ(hl(X,E), E) = 0 and ḡ(hl(X,E), φ̄E) = 0 for any X ∈ Γ(TM) and E ∈
Γ(Rad(TM)). From (12), we have ḡ(hl(X,E), E) = 0. Using (23), we get
ḡ(hl(X,E), φ̄E) = −ḡ(hl(φ̄X,E), E) = 0. Similarly, we also have hl(X, φ̄E) =
0.

On the other hand, for M ′, we write

∇̄XY = ∇′
XY + h′(X,Y ), ∀X,Y ∈ Γ(TM ′),

where ∇′ is a metric connection of M ′ and h′ is the second fundamental form
of M ′. It is known ([6]) that ∇′ is a metric connection of M ′ is equivalent to
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h′ = 0. Note that g′(X,Y ) = g(X,Y ) for X,Y ∈ Γ(S(TM)). Thus we have
0 = h′(X,Y ) = h∗(X,Y ) + hl(X,Y ), ∀X,Y ∈ Γ(TM ′). Summing up, we have
hl(X,Y ) = 0 for any X,Y ∈ Γ(TM), which completes the proof. ¤
Theorem 3.6. Let (M, g, S(TM), S(TM⊥)) be an invariant lightlike subman-
ifold of an indefinite cosymplectic manifold (M̄, ḡ). Then M is minimal in M̄
if and only if Dl(X,W ) = 0 for X ∈ Γ(Rad(TM)) and W ∈ Γ(S(TM)).

Proof. Since M is invariant, it follows from Remark 3.2 that S(TM) is φ̄-
invariant. Thus we can take a local φ̄-basis {ei, φ̄ei, ξ}i=1,··· ,(m−r−1)/2 on
S(TM), where r denotes the rank of Rad(TM). It is clear from (22) and (23)
that

trace h =
∑

i

ϵi{h(ei, ei) + h(φ̄ei, φ̄ei)} + ϵh(ξ, ξ) = 0,

where ϵi = +1 or −1. From (6), we have

ḡ(hs(X,Y ),W ) = −ḡ(Y,Dl(X,W ))

for any X,Y ∈ Γ(Rad(TM)) and W ∈ Γ(S(TM⊥)). Hence by definition, we
complete the proof. ¤

A lightlike submanifold (M, g) of a semi-Riemannian manifold (M̄, ḡ) is
totally umbilical (cf. [7]) in M̄ if there is a smooth transversal vector field
H ∈ Γ(tr(TM)) on M , called the transversal curvature vector field of M , such
that, for all X,Y ∈ Γ(TM),

(24) h(X,Y ) = Hg(X,Y ).

It is easy from (3) and (6) to see that M is totally umbilical if and only if on each
coordinate neighbourhood U there exist smooth vector fields Hl ∈ Γ(ltr(TM))
and Hs ∈ Γ(S(TM⊥)) such that

hl(X,Y ) = Hlg(X,Y ), Dl(X,W ) = 0,(25)

hs(X,Y ) = Hsg(X,Y ), ∀X,Y ∈ Γ(TM),W ∈ Γ(S(TM⊥)).(26)

Theorem 3.7. Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold, tangent
to the structure vector field ξ, of an indefinite cosymplectic manifold (M̄, ḡ).
If M is totally umbilical, then M is totally geodesic.

Proof. Since ξ is tangent to M, we have from Lemma 3.1 and (3)

(27) hs(X, ξ) = 0 = hl(X, ξ), ∀X ∈ Γ(TM).

It follows from (25) and (26) that

hl(ξ, ξ) = Hlg(ξ, ξ) = ϵHl = 0, so, Hl = 0,

hs(ξ, ξ) = Hsg(ξ, ξ) = ϵHs = 0, so, Hs = 0,

since M is totally umbilical and ξ is a non-null vector field. Thus we get

hl(X,Y ) = Hlg(X,Y ) = 0,

hs(X,Y ) = Hsg(X,Y ) = 0, ∀X,Y ∈ Γ(TM),
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which imply hl = 0 and hs = 0. So M is totally geodesic. ¤

Any lightlike totally geodesic submanifold is minimal. Hence it follows from
Theorem 3.6 that any totally umbilical lightlike submanifold with structure
vector field tangent to submanifold is minimal.

4. Almost Contact CR-lightlike Submanifolds

Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold, tangent to the struc-
ture vector field ξ, immersed in an indefinite cosymplectic manifold (M̄, ḡ). We
say that M is an almost contact CR-lightlike submanifold of M̄ if the following
conditions (i) and (ii) are satisfied.
(i) Rad(TM) is a distribution on M such that

Rad(TM) ∩ φ̄(Rad(TM)) = {0}.

(ii) There exist vector bundles D0 and D′ over M such that

S(TM) = {φ̄(Rad(TM)) ⊕ D′} ⊥ D0 ⊥ ξ,

φ̄(D0) = D0, φ̄(D′) = L1 ⊥ ltr(TM),

where D0 is non-degenerate and L1 is a vector subbundle of S(TM⊥).
Thus, we have the following decomposition

(28) TM = D ⊕ D′ ⊕ ξ, D = Rad(TM) ⊥ φ̄(Rad(TM)) ⊥ D0.

An almost contact CR-lightlike submanifold is proper if D0 ̸= {0} and L1 ̸=
{0}. We note that any almost contact CR-lightlike 3-dimensional submanifold
is 1-lightlike.

Remark 4.1. From this definition and the decomposition of TM̄ as appeared
in section 2, we obtain that a vector subbundle L⊥

1 in S(TM⊥) is φ̄-invariant
and D′ = φ̄L1 ⊥ φ̄(ltr(TM)).

Example 4.2. Let (M, g) be a lightlike hypersurface of M̄([8]). Then for a
nonzero local section E ∈ Γ(Rad(TM)) = TM⊥, ḡ(φ̄E,E) = 0, which implies
that φ̄E is tangent to M . Hence we get a distribution φ̄(Rad(TM)) of rank
one such that φ̄(Rad(TM))∩Rad(TM) = {0}. Now we choose a screen distri-
bution S(TM) such that it contains both φ̄E and ξ. For any local section E ∈
Γ(Rad(TM)), there exists a unique lightlike local section N in Γ(ltr(TM)) such
that ḡ(N,E) = 1. On the other hand, we obtain ḡ(φ̄N,E) = −ḡ(N, φ̄E) = 0
and ḡ(N,N) = 0, which mean that φ̄N ∈ Γ(S(TM)). Taking D′ = φ̄(tr(TM)),
we get a non-degenerate vector subbundle φ̄(TM⊥)⊕ φ̄(tr(TM)) of S(TM) of
rank 2. Then there exists a non-degenerate distribution D0 on M such that

S(TM) = {φ̄(Rad(TM)) ⊕ D′} ⊥ D0 ⊥ ξ,

where D0 is an invariant distribution with respect to φ̄, i. e., φ̄(D0) = D0.
Moreover φ̄(D′) = tr(TM). Thus M is an almost contact CR-lightlike hyper-
surface.
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Proposition 4.3. There exist no isotropic or totally lightlike almost contact
CR-lightlike submanifolds on M̄ .

Proof. If M is isotropic or totally lightlike, then S(TM) = {0}. Hence condi-
tions (i) and (ii) of the definition are not satisfied. ¤

Denote the orthogonal complement subbundle to the vector subbundle L1

in S(TM⊥) by L⊥
1 . For an almost contact CR-lightlike submanifold M we put

(29) φ̄X = fX + ωX, ∀X ∈ Γ(TM),

where fX ∈ Γ(D) and ωX ∈ Γ(L1 ⊥ ltr(TM)). Similarly, we have

(30) φ̄W = BW + CW, ∀W ∈ Γ(S(TM⊥)),

where BW ∈ Γ(φ̄L1) and CW ∈ Γ(L⊥
1 ).

Proposition 4.4. Let M be an almost contact CR-lightlike submanifold of an
indefinite cosymplectic manifold M̄ . Then we have the followings :

(i) D ⊕ ξ is integrable if and only if the second fundamental form of M
satisfies

h(X, φ̄Y ) = h(φ̄X, Y ), ∀X,Y ∈ Γ(D ⊕ ξ).
(ii) The totally real distribution D′ is integrable if and only if the shape

operator of M satisfies

Aφ̄XY = Aφ̄Y X, ∀X,Y ∈ Γ(D′).

Proof. It is clear that ω[X,Y ] = 0 for any X,Y ∈ Γ(D⊕ ξ) if and only if D⊕ ξ
is integrable. Differentiating (29) along Y ∈ Γ(D ⊕ ξ) and taking transversal
parts, we get from Remark 4.1 ω(∇Y X) = −Chs(X,Y ) + h(Y, φ̄X), which
implies that ω[X,Y ] = h(Y, φ̄X) − h(X, φ̄Y ) for any X,Y ∈ Γ(D ⊕ ξ), where
we have used (1), (2), (18) and (30). Thus we prove (i). For the proof of (ii)
we also obtain that f [X,Y ] = Aφ̄XY − Aφ̄Y X, which implies (ii). ¤
Proposition 4.5. Let M be an almost contact CR-lightlike submanifold of an
indefinite cosymplectic manifold M̄ . Then D ⊕ ξ is totally geodesic foliation if
and only if

(31) hl(X, φ̄Y ) = 0, and hs(X,Y ) has no components in L1.

Proof. Since D⊕ξ defines a totally geodesic foliation if and only if g(∇XY, φ̄E) =
0 = g(∇XY,W ) for X,Y ∈ Γ(D ⊕ ξ) and W ∈ Γ(φ̄L1), we have from (3) and
(18)

g(∇XY, φ̄E) = −ḡ(φ̄∇̄XY,E) − ḡ(∇̄X φ̄Y , E)

= −ḡ(∇X φ̄Y + h(X, φ̄Y ), E)

= −ḡ(hl(X, φ̄Y ), E).

(32)

In a similar way, we have

(33) g(∇X φ̄Y ,W ) = −ḡ(hs(X,Y ), φ̄W ).

Hence the proof follows from (32) and (33). ¤
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A lightlike submanifold M of a semi-Riemannian manifold is an irrota-
tional submanifold ([10]) if ∇̄XE ∈ Γ(TM) for any X ∈ Γ(TM) and E ∈
Γ(Rad(TM)).

From (3) we concluded that M is an irrotational lightlike submanifold if and
only if the followings hold :

hs(X,E) = 0, hl(X,E) = 0, ∀X ∈ Γ(TM).

We say that a lightlike submanifold M of an indefinite cosymplectic manifold
M̄ , is a screen real submanifold ([7]) if Rad(TM) and S(TM) are invariant and
anti-invariant with respect to φ̄, respectively.

Proposition 4.6. An almost contact CR-lightlike submanifolds are nontrivial.

Proof. Suppose M is an invariant lightlike submanifold of an indefinite cosym-
plectic manifold. Then we see from Remark 3.2 that radical distribution is
invariant, which is not consistent with condition (i) of the definition. Similarly,
the case of the screen real lightlike can be also argued. ¤

We know from Proposition 4.6 that almost contact CR-lightlike submani-
folds exclude the invariant and screen real subcases.
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