탄소원 조성 조절을 이용한 Azotobacter indicus var. myxogenes L3로부터 PS-7 생산 최적화

Optimization of PS-7 Production Process by Azotobacter indicus var. myxogenes L3 Using the Control of Carbon Source Composition

  • Ra, Chae-Hun (Department of Biotechnology, Pukyong National University) ;
  • Kim, Ki-Myong (School of Life Sciences and Biotechnology, Korea University) ;
  • Hoe, Pil-Woo (Trade & Investment Promotiion Team, Busan Metropolitan City) ;
  • Lee, Sung-Jae (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • 발행 : 2008.03.28

초록

Flask 배양으로 기본 유청 배지MSM를 배지로 하고 첨가한 각 탄소원의 PS-7생산 효과를 살펴보면 fructose, glucose와 sucrose의 첨가가 PS-7의 생산을 다른 당에 비해 향상시킴을 알 수 있었다. 그러나 galactose의 경우 첨가량이 증가될수록 오히려 PS-7의 생산량이 감소되는 경향을 나타내었다. 여러 가지 배양 변수를 고려한 결과 glucose씨 첨가가 최적임을 확인하였다. 5L 발효조에 의한 PS-7 생산의 경우 유청과 glucose를 함께 첨가한 것이 유청과 glucose만을 배지의 탄소원으로 사용했을 때 보다 PS-7의 생산량이 월등히 향상되는 것을 알 수 있었으며, 유청 1%와 glucose 1%배지의 경우 PS-7생산량이 3 g/L를 생산하였다. 유청 1%와 glucose 2%배지의 경우 4 g/L의 PS-7의 생산하였으나 잔당량이 $30{\sim}40%$가 남아 생산효율(yield)면에서는 떨어짐을 알 수 있었다. 배지내 Glucose농도 변화에 따른 점성(viscosity)의 변화는 PS-7의 생산량의 변화와 비슷한 패턴을 보이지만 분자량 증대에 따른 점도의 증가는 훨씬 높게 나타났다. 본 실험의 결과 일반적으로 C/N ratio가 다당류인 PS-7생산에 중요한 역할을 하고 있으며, 유청 1%+glucose 1% 배지를 사용할 때 높은 점도와 수율의 PS-7을 얻을 수 있는 최적 배지임을 알 수 있었다.

The proteins in whey are separated and used as food additives. The remains (mainly lactose) are spray-dried to produce sweet whey powder, which is widely used as an additive for animal feed. Sweet whey powder is also used as a carbon source for the production of valuable products such as polysaccharides. Glucose, fructose, galactose, and sucrose as asupplemental carbon source were evaluated for the production of PS-7 from Azotobacter indicus var. myxogenes L3 grown on whey based MSM media. Productions of PS-7 with 2% (w/v) fructose and sucrose were 2.05 and 2.31g/L, respectively. The highest production of PS-7 was 2.82g/L when 2% (w/v) glucose was used as the carbon source. Galactose showed low production of PS-7 among the carbon sources tested. The effects of various carbon sources addition to whey based MSM medium showed that glucose could be the best candidate for the enhancement of PS-7 production using whey based MSM medium. To evaluate the effect of glucose addition to whey based media on PS-7 production, fermentations with whey and glucose mixture (whey 1, 2, 3%; whey 1% + glucose 1%, whey 1% + glucose 2% and glucose 2%, w/v) were carried out. Significant enhancement of PS-7 production with addition of 1% (w/v) and 2% (w/v) glucose in 1% (w/v) whey media was observed. The PS-7 concentration of 2% glucose added whey lactose based medium was higher than that of 1% glucose addition, however, the product yield $Y_{p/s}$ was higher in 1% glucose added whey lactose based MSM medium. Therefore, the optimal condition for the PS-7 production from the Azotobacter indicus var.myxogenes L3, was 1% glucose addition to 1% whey lactose MSM medium.

키워드

참고문헌

  1. Dlamini, A. M. and P. S. Peiris. 1997. Production of high viscosity whey broths by lactose utilizing Xanthomonas campestris strain. Appl. Environ. Microbiol. 50: 1483-1485
  2. Dubois, M., Ka. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  3. Falk, C., P. E. Jansson, M. Rinaudo, A. Heyrad, G. Widmalm, and P. Hebbar: 1996. Structural studies of the exocellular polysaccharide from Sphingomonas aucimobilis strain I-886. Carbohydr. Res. 285: 69-79 https://doi.org/10.1016/S0008-6215(96)90172-X
  4. Gulin, S., A. Kussak, P. E. Jansson, and G. Widmalm. 2001. Structural studies of S-7, another exocellular polysaccharide containing 2-deoxy-arbino-hexuronic acid. Carbohydr. Res. 311: 285-290
  5. Jurgen, O. 2000. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence. FEMS Microbiol. Rev. 24: 321-333 https://doi.org/10.1111/j.1574-6976.2000.tb00545.x
  6. Lee, J. W., W. G. Yeomans, A. L. Allen, R. A. Gross, and D. L. Kaplan. 1997. Compositional consistency of a heteropolysaccharide- 7 produced by Beijerinckia indica. Biotechnol. Lett. 19: 803-807 https://doi.org/10.1023/A:1018356713795
  7. Saier, M. H., G. M. Cook, J. Deutscher, I. T. Paulsen, J. Reizer, and J. J. Ye. 1996. Catabolite repression and inducer control in gram-positive bacteria. Microbiol. 142: 217-230 https://doi.org/10.1099/13500872-142-2-217
  8. Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16: 41-46 https://doi.org/10.1016/S0167-7799(97)01139-6
  9. Wu, J. R., J. H. Son, K. M. Kim, S. W. Nam, J. W. Lee, and S. K. Kim. 2005. Optimization of heteropolysaccharide-7 production by Beijerinckia indica. Kor. J. Microbiol. Biotechnol. 33: 117-122