Control of Acetate Production Rate in Escherichia coli by Regulating Expression of Single-Copy pta Using $lacI^Q$ in Multicopy Plasmid

  • Lee, Sun-Gu (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Liao, James C (Department of Chemical and Biomolecular Engineering, University of California Los Angeles)
  • Published : 2008.02.29

Abstract

A tightly regulated gene expression system composed of a single-copy target gene under the control of a lac promoter derivative and lacI gene in a multicopy plasmid is proposed, and its ability to control the flux of a metabolic pathway is demonstrated. A model system to control the flux of acetyl-CoA to acetyl phosphate was constructed by integrating pta, a gene encoding phosphotransacetylase, under a tac promoter into the chromosome of E. coli with a pta-negative background and transforming a multicopy plasmid containing the $lacI^Q$ gene into the strain. The production rate of acetate was shown to be tightly controlled when varying the concentration of the inducer (IPTG) in he model system.

Keywords

References

  1. Asenjo, J. A., P. Ramirez, I. Rapaport, J. Aracena, E. Goles, and B. A. Andrews. 2007. A discrete mathematical model applied to genetic regulation and metabolic networks. J. Microbiol. Biotechnol. 17: 496-510
  2. Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421 https://doi.org/10.1016/S0958-1669(99)00003-8
  3. Bowers, L. M., K. LaPointa, L. Anthony, A. Pluciennik, and M. Filutowicz. 2004. Bacterial expression system with tightly regulated gene expression and plasmid copy number. Gene 340: 11-18 https://doi.org/10.1016/j.gene.2004.06.012
  4. Bulter, T., S. G. Lee, W. W. Wong, E. Fung, M. R. Connor, and J. C. Liao. 2004. Design of artificial cell-cell communication using gene and metabolic network. Proc. Natl. Acad. Sci. USA 101: 2299-2304
  5. Farmer, W. R. and J. C. Liao. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63: 3205-3210
  6. Fung, E., W. W. Wong, J. K. Suen, T. Bulter, S. Lee, and J. C. Liao. 2005. A synthetic gene-metabolic oscillator. Nature 435: 118-122 https://doi.org/10.1038/nature03508
  7. Furste, J. P., W. Pansegrau, R. Frank, H. Blocker, P. Scholz, M. Bagdasarian, and E. Lanka. 1986. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48: 119-131 https://doi.org/10.1016/0378-1119(86)90358-6
  8. Glascock, C. B. and M. J. Weickert. 1998. Using $chromosomal lacI^{Q1}$ to control expression of genes on high-copy-number plasmids in Escherichia coli. Gene 223: 221-231 https://doi.org/10.1016/S0378-1119(98)00240-6
  9. Haldimann, A. and B. L. Wanner. 2001. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183: 6384-6393 https://doi.org/10.1128/JB.183.21.6384-6393.2001
  10. Jones, K. L., S. Kim, and J. D. Keasling. 2000. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metabolic Eng. 2: 328-338 https://doi.org/10.1006/mben.2000.0161
  11. Keasling, J. D. 1999. Gene-expression tools for the metabolic engineering of bacteria. TIBTECH 17: 452-460 https://doi.org/10.1016/S0167-7799(99)01376-1
  12. Kim, J. Y. H. and H. J. Cha. 2003. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: Improved foreign protein production. Biotechnol. Bioeng. 83: 841-853 https://doi.org/10.1002/bit.10735
  13. Kim, T.-Y. and S.-Y. Lee. 2006. Accurate metabolic flux analysis through data reconciliation of isotope balance-based data. J. Microbiol. Biotechnol. 16: 1139-1143
  14. Lee, S. G., Y. J. Kim, S. I. Han, Y.-K. Oh, S. Park, Y. H. Kim, and K.-S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraintbased metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998
  15. Lutz, R. and H. Bujard. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and $AraC/I_{1}-I_{2}$ regulatory elements. Nucleic Acids Res. 25: 1203-1210 https://doi.org/10.1093/nar/25.6.1203
  16. Nakano, K., M. Rischke, S. Sato, and H. Markl. 1997. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl. Microbiol. Biotechnol. 48: 597-601 https://doi.org/10.1007/s002530051101
  17. Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  18. Raab, R. M., K. Tyo, and G. Stephanopoulos. 2005. Metabolic engineering. Adv. Biochem. Eng. Biotechnol. 100: 1-17
  19. Sorensen, H. P. and K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in E. coli. J. Biotechnol. 115: 113-128 https://doi.org/10.1016/j.jbiotec.2004.08.004
  20. Stephanopoulos, G. 1999. Metabolic fluxes and metabolic engineering. Metab. Eng. 1: 1-11 https://doi.org/10.1006/mben.1998.0101
  21. Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering. Academic Press