Chemical Composition and Biological Activities of Essential Oils Extracted from Korean Endemic Citrus Species

  • Baik, Jong-Seok (Department of Chemistry, Cheju National University) ;
  • Kim, Sang-Suk (SkinCure Consmetics Inc., JeJu Bio-Industry Development Center) ;
  • Lee, Jung-A (Laboratory of Microbiology and Biotechnology, Jeju Biodiversity Research Institute(JBRI)) ;
  • Oh, Tae-Heon (Department of Chemistry, Cheju National University) ;
  • Kim, Ji-Young (Laboratory of Microbiology and Biotechnology, Jeju Biodiversity Research Institute(JBRI)) ;
  • Lee, Nam-Ho (Department of Chemistry, Cheju National University) ;
  • Hyun, Chang-Gu (Laboratory of Microbiology and Biotechnology, Jeju Biodiversity Research Institute(JBRI))
  • Published : 2008.01.31

Abstract

The aim of this study was to analyze the chemical composition of 14 kinds of citrus oils and to test their biological activities. Citrus essential oils were obtained by steam distillation from immature fruits collected from Jeju Island and were analyzed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Limonene (55.4% to 91.7%), myrcene (2.1% to 32.1%), ${\alpha}$-pinene (0.6% to 1.6%) and linalool (0.4% to 6.9%) were the major components in most citrus species. To evaluate in vitro antibacterial activity, all essential oils were tested against Propionibacterium acnes and Staphylococcus epidermidis. Nine out of fourteen citrus oils exhibited antibacterial activity against P. acnes, but not against S. epidermidis. The effects of the citrus oils on DPPH radical scavenging, superoxide radical anion scavenging, nitric oxide radical, and cytotoxicity were also assessed. Three essential citrus oils, Joadeung, Dongjunggyul, and Bujiwha, exhibited potent inhibitory effects on nitric oxide production. Two essential oils, Dongjunggyul and Joadeung, showed potent free radical scavenging activities in the DPPH assay. For future applications in cosmetic products, we also performed MTT assays in a human dermal fibroblast cell line. The majority of the essential oils showed no cytotoxicity. The results indicate that citrus essential oils can be useful natural agents for cosmetic application.

Keywords

References

  1. Andrews, R. E., L. W. Parks, and K. D. Spence. 1980. Some effects of Douglas fir terpenes on certain microorganisms. Appl. Environ. Microbiol. 40: 301-304
  2. Choi, G. J., J. C. Kim, K. S. Jang, H. K. Lim, I. K. Park, S. C. Shin, and K. Y. Cho. 2006. In vivo antifungal activities of 67 plant fruit extracts against six plant pathogenic fungi. J. Microbiol. Biotechnol. 16: 491-495
  3. Choi, H. S. 2003. Character impact odorants of Citrus Hallabong [(C. unshiu Marcov x C. sinensis Osbeck)xC. reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem. 51: 2687-2692 https://doi.org/10.1021/jf021069o
  4. Cosentino, S., C. I. G. Tuberoso, B. Pisano, M. Satta, V. Mascia, E. Arzedi, and F. Palmas. 1999. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 29: 130-135 https://doi.org/10.1046/j.1472-765X.1999.00605.x
  5. Helander, I. M., H. L. Alakomi, L. K. Kyosti, T. Mattialaandholm, I. Pol, E. J. Smid, G. M. Gorris, and A. von Wright. 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 46: 3590-3595 https://doi.org/10.1021/jf980154m
  6. Janssen, A. M., J. Scheffer, and A. Svendsen. 1987. Antimicrobial activity of essential oils: A 1976-1986 literature review. Aspects of test methods. Planta Med. 53: 395-398 https://doi.org/10.1055/s-2006-962755
  7. Kim, M. R., J. Y. Lee, H. H. Lee, D. K. Aryal, Y. G. Kim, S. K. Kim, E. R. Woo, and K. W. Kang. 2006. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol. 44: 1299-1307 https://doi.org/10.1016/j.fct.2006.02.007
  8. Lee, S. B., K. H. Cha, S. N. Kim, S. Altantsetseg, S. Shatar, O. Sarangerel, and C. W. Nho. 2007. The antimicrobial activity of essential oil from Dracocephalum foetidum against pathogenic microorganisms. J. Microbiol. 45: 53-57
  9. Li, X., S. K. Kim, J. S. Kang, H. D. Choi, and B. W. Son. 2006. Radical scavenging hydroxyphenyl ethanoic acid derivatives from a marine-derived fungus. J. Microbiol. Biotechnol. 16: 637-638
  10. Magwa, M. L., M. Gundidza, N. Gweru, and G. Humphrey. 2006. Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. J. Ethnopharmacol. 103: 85-98 https://doi.org/10.1016/j.jep.2005.07.024
  11. Ozer, H., M. Sokmen, M. Gulluce, A. Adiguzel, F. Sahin, A. Sokmen, H. Kilic, and O. Baris. 2007. Chemical composition and antimicrobial and antioxidant activities of the essential oil and methanol extract of Hippomarathrum microcarpum (Bieb.) from Turkey. J. Agric. Food Chem. 55: 937-942 https://doi.org/10.1021/jf0624244
  12. Sanguinetti, M., B. Posteraro, L. Romano, F. Battaglia, T. Lopizzo, E. De Carolis, and G. Fadda. 2007. In vitro activity of Citrus bergamia (bergamot) oil against clinical isolates of dermatophytes. J. Antimicrob. Chemother. 59: 305-308 https://doi.org/10.1093/jac/dkl473
  13. Simard, S., J. M. Hachey, and G. J. Collin. 1988. The variations of essential oil composition during the extraction process. The case of Thuja occidentalis L. and Abies balsamea (L.) MILL. J. Wood Chem. Tech. 8: 561-573 https://doi.org/10.1080/02773818808070701
  14. Song, H. S., N. T. Lan Phi, Y. H. Park, and M. Sawamura. 2006. Volatile profiles in cold-pressed peel oil from Korean and Japanese Shiranui (Citrus unshiu Marcov. x C. sinensis Osbeck x C. reticulata Blanco). Biosci. Biotechnol. Biochem. 70: 737-739 https://doi.org/10.1271/bbb.70.737
  15. Sung, W. S., H. J. Jung, I. S. Lee, H. S. Kim, and D. G. Lee. 2006. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 16: 349-354
  16. Uribe, S., T. Ramirez, and A. Pena. 1985. Effects of $\beat$-pinene on yeast membrane functions. J. Bacteriol. 161: 195-200
  17. Winterbourn, C. C. and A. J. Kettle. 2003. Radical-radical reactions of superoxide: A potential route to toxicity. Biochem. Biophys. Res. Commun. 305: 729-736 https://doi.org/10.1016/S0006-291X(03)00810-6