Functional Analysis of a Gene Encoding Endoglucanase that Belongs to Glycosyl Hydrolase Family 12 from the Brown-Rot Basidiomycete Fomitopsis palustris

  • Song, Byeong-Cheol (Department of Biotechnology, College of Industrial Science, Chung-Ang University) ;
  • Kim, Ki-Yeon (Department of Biotechnology, College of Industrial Science, Chung-Ang University) ;
  • Yoon, Jeong-Jun (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Sim, Se-Hoon (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Lee, Kang-Seok (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Kim, Yeong-Suk (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Kim, Young-Kyoon (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Cha, Chang-Jun (Department of Biotechnology, College of Industrial Science, Chung-Ang University)
  • Published : 2008.03.31

Abstract

The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and ${\beta}$-glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.

Keywords

References

  1. Biely, P., O. Markovic, and D. Mislovicova. 1985. Sensitive detection of endo-1,4-$\beta$-glucanases and endo-1,4-$\beta$-xylanases in gels. Anal. Biochem. 144: 147-151 https://doi.org/10.1016/0003-2697(85)90096-X
  2. Bourne, Y. and B. Henrissat. 2001. Glycoside hydrolases and glycosyltransferases families and functional modules. Curr. Opin. Struct. Biol. 11: 593-600 https://doi.org/10.1016/S0959-440X(00)00253-0
  3. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cohen, R., M. Suzuki, and K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71: 2412-2417 https://doi.org/10.1128/AEM.71.5.2412-2417.2005
  5. Gilkes, N. R., B. Henrissat, and D. G. Kilburn. 1991. Domains in microbial beta-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303-315
  6. Goedegebuur, F., T. Fowler, J. Phillips, P. van der Kley, P. van Solingen, L. Dankmeyer, and S. D. Power. 2002. Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Curr. Genet. 41: 89-98 https://doi.org/10.1007/s00294-002-0290-2
  7. Henrissat, B., H. Driguez, C. Viet, and M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3: 722-726 https://doi.org/10.1038/nbt0885-722
  8. Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83-95 https://doi.org/10.1016/0378-1119(89)90339-9
  9. Highley, T. L. 1973. Influence of carbon source on cellulose activity of white-rot and brown-rot fungi. Wood Fiber 5: 50-58
  10. Kerem, Z., K. A. Jensen, and K. E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: Evidence for an extracellular hydroquinonedriven Fenton reaction. FEBS Lett. 446: 49-54 https://doi.org/10.1016/S0014-5793(99)00180-5
  11. Lee, T.-H., P.-O. Lim, and Y.-E. Lee. 2007. Cloning, characterization, and expression of a xylanase gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36
  12. Lim, W. J., S. K. Ryu, S. R. Park, M. K. Kim, C. L. An, S. Y. Hong, E. C. Shin, J. Y. Lee, Y. P. Lim, and H. D. Yun. 2005. Cloning of celC, third cellulase gene, from Pectobacterium carotovorum subsp. carotovorum LY34 and its comparison to those of Pectobacterium sp. J. Microbiol. Biotechnol. 15: 302-309
  13. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577 https://doi.org/10.1128/MMBR.66.3.506-577.2002
  14. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380
  15. Nidetzky, B., W. Steiner, and M. Claeyssens. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: Adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem. J. 303: 817-823 https://doi.org/10.1042/bj3030817
  16. Ouyang, J., M. Yan, D. Kong, and L. Xu. 2006. A complete protein pattern of cellulase and hemicellulase genes in the filamentous fungus Trichoderma reesei. Biotechnol. J. 1: 1266-1274 https://doi.org/10.1002/biot.200600103
  17. Rabinovich, M. L., M. S. Melnick and A. V. Bolobova. 2002. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67: 1026-1050
  18. Schulein, M. 1997. Enzymatic properties of cellulases from Humicola insolens. J. Biotechnol. 57: 71-81 https://doi.org/10.1016/S0168-1656(97)00090-4
  19. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23
  20. Vanden Wymelenberg, A., P. Minges, G. Sabat, D. Martinez, A. Aerts, A. Salamov, I. Grigoriev, H. Shapiro, N. Putnam, P. Belinky, C. Dosoretz, J. Gaskell, P. Kersten, and D. Cullen. 2006. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet. Biol. 43: 343-356 https://doi.org/10.1016/j.fgb.2006.01.003
  21. Yang, P., P. Shi, Y. Wang, Y. Bai, K. Meng, H. Luo, T. Yuan, and B. Yao. 2007. Cloning and overexpression of a Paenibacillus $\beta$-glucanase in Pichia pastoris: Purification and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 17: 58-66
  22. Yoon, J.-J. and Y.-K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. 43: 487-492
  23. Yoon, J.-J., C.-J. Cha, Y.-S. Kim, D.-W. Son, and Y.-K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17: 800-805
  24. Yoon, M.-H. and W.-Y. Choi. 2007. Characterization and action patterns of two $\beta$-1,4-glucanases purified from Cellulomonas uda CS1-1. J. Microbiol. Biotechnol. 17: 1291-1299