Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli

  • Jung, Kyung-Hwan (Division of Food and Biotechnology, Chungju National University)
  • Published : 2008.03.31

Abstract

We observed that an inclusion body (IB) of recombinant ${\beta}$-galactosidase that was produced by the araBAD promoter system in Escherichia coli (E. coil) showed enzyme activity. In order to improve its activity, the lowering of the transcription rate of the ${\beta}$-galactosidase structural gene was attempted through competition between an inducer (L-arabinose) and an inducer analog (D-fucose). In the deep-well microtiter plate culture and lab-scale fermentor culture, it was demonstrated that the addition of D-fucose caused an improvement in specific ${\beta}$-galactosidase production, although ${\beta}$-galactosidase was produced as an IB. In particular, the addition of D-fucose after induction led to an increase in the specific activity of ${\beta}$-galactosidase IB. Finally, we confirmed that the addition of D-fucose after induction caused changes in the structure of ${\beta}$-galactosidase IB, with higher enzyme activity. Based on these results, we expect that an improved enzyme IB will be used as a biocatalyst of the enzyme bioprocess, because an enzyme IB can be purified easily and has physical durability.

Keywords

References

  1. Ami, D., L. Bonecchi, S. Calì, G. Orsini, G. Tonon, and S. M. Doglia. 2003. FT-IR study of heterologous protein expression in recombinant Escherichia coli strains. Biochim. Biophys. Acta 1624: 6-10 https://doi.org/10.1016/j.bbagen.2003.09.008
  2. Ami, D., A. Natalello, P. Gatti-Lafranconi, M. Lotti, and S. M. Doglia. 2005. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett. 579: 3433-3436 https://doi.org/10.1016/j.febslet.2005.04.085
  3. Bramhachari, P. V., P. B. Kavikishor, R. Ramadevi, R. Kumar, B. R. Rao, and S. K. Dubey. 2007. Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J. Microbiol. Biotechnol. 17: 44-51
  4. Bukau, B., J. Weissman, and A. Horwich. 2006. Molecular chaperones and protein quality control. Cell 125: 443-451 https://doi.org/10.1016/j.cell.2006.04.014
  5. Carrio, M., N. Gonzalez-Montalban, A. Vera, A. Villaverde, and S. Ventura. 2005. Amyloid-like properties of bacterial inclusion bodies. J. Mol. Biol. 347: 1025-1037 https://doi.org/10.1016/j.jmb.2005.02.030
  6. Davis, G. D., C. Elisee, D. M. Newham, and R. G. Harrison. 1999. New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol. Bioeng. 65: 382-388 https://doi.org/10.1002/(SICI)1097-0290(19991120)65:4<382::AID-BIT2>3.0.CO;2-I
  7. de Groot, N. S. and S. Ventura. 2006. Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett. 580: 6471-6476 https://doi.org/10.1016/j.febslet.2006.10.071
  8. de Groot, N. S. and S. Ventura. 2006. Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J. Biotechnol. 125: 110-113 https://doi.org/10.1016/j.jbiotec.2006.02.026
  9. Duetz, W. A., L. Ruedi, R. Hermann, K. O'Connor, J. Buchs, and B. Witholt. 2000. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66: 2641-2646 https://doi.org/10.1128/AEM.66.6.2641-2646.2000
  10. Garcia-Fruitos, E., M. M. Carrio, A. Aris, and A. Villaverde. 2005. Folding of a misfolding-prone $\beta$-galactosidase in absence of DnaK. Biotechnol. Bioeng. 90: 869-875 https://doi.org/10.1002/bit.20496
  11. Garcia-Fruitos, E., N. Gonzalez-Montalban, M. Morell, A. Vera, R. M. Ferraz, A. Arís, S. Ventura, and A. Villaverde. 2005. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb. Cell Fact. 4: 27 https://doi.org/10.1186/1475-2859-4-27
  12. Gonzalez-Montalban, N., E. Garcia-Fruitos, S. Ventura, A. Aris, and A. Villaverde. 2006. The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microb. Cell Fact. 5: 26 https://doi.org/10.1186/1475-2859-5-26
  13. Hardin, C., J. Edwards, A. Riell, D. Presutti, W. Miller, and D. Robertson. 2001. Time course assay of $\beta$-galactosidase, pp. 292-293. In: Cloning, Gene Expression, and Protein Purification; Experimental Procedures and Process Rationale. Oxford University Press
  14. Hoffmann, F., J. van den Heuvel, N. Zidek, and U. Rinas. 2004. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Technol. 34: 235-241 https://doi.org/10.1016/j.enzmictec.2003.10.011
  15. Jevsevar, S., V. Gaberc-Porekar, I. Fonda, B. Podobnik, J. Grdadolnik, and V. Menart. 2005. Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol. Prog. 21: 632-639 https://doi.org/10.1021/bp0497839
  16. Joo, J.-H. and J.-W. Yun. 2005. Structural and molecular characterization of extracellular polysaccharides produced by a new fungal strain, Trichoderma erinaceum DG-312. J. Microbiol. Biotechnol. 15: 1250-1257
  17. Lee, Y.-J. and K.-H. Jung. 2007. Modulation of the tendency towards inclusion body formation of recombinant protein by the addition of glucose in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 17: 1898-1903
  18. Kapust, R. B. and D. S. Waugh. 1999. Escherichia coli maltosebinding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8: 1668-1674 https://doi.org/10.1110/ps.8.8.1668
  19. Koo, T. Y. and T. H. Park. 2007. Expression of recombinant human growth hormone in a soluble form in Escherichia coli by slowing down the protein synthesis rate. J. Microbiol. Biotechnol. 17: 579-585
  20. Miller, J. M. 1973. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  21. Mogk, A., M. P. Mayer, and E. Deuerling. 2002. Mechanisms of protein folding: Molecular chaperones and their application in biotechnology. Chembiochem 3: 807-814 https://doi.org/10.1002/1439-7633(20020902)3:9<807::AID-CBIC807>3.0.CO;2-A
  22. Schleif, R. 2000. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 16: 559-565 https://doi.org/10.1016/S0168-9525(00)02153-3
  23. Sorensen, H. P. and K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115: 113-128 https://doi.org/10.1016/j.jbiotec.2004.08.004
  24. Sorensen, H. P., H. U. Sperling-Petersen, and K. K. Mortensen. 2003. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif. 32: 252-259 https://doi.org/10.1016/j.pep.2003.07.001
  25. Strandberg, L. and S.-O. Enfors. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669-1674
  26. Tokatlidis, K., P. Dhurjati, J. Millet, P. Beguin, and J. P. Aubert. 1991. High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett. 282: 205-208 https://doi.org/10.1016/0014-5793(91)80478-L
  27. van den Berg, B., R. J. Ellis, and C. M. Dobson. 1999. Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 18: 6927-6933 https://doi.org/10.1093/emboj/18.24.6927
  28. Ventura, S. and A. Villaverde. 2006. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 24: 179-185 https://doi.org/10.1016/j.tibtech.2006.02.007
  29. Vera, A., N. Gonzalez-Montalban, A. Aris, and A. Villaverde. 2007. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol. Bioeng. 96: 1101-1106 https://doi.org/10.1002/bit.21218
  30. Worrall, D. M. and N. H. Goss. 1989. The formation of biologically active $\beta$-galactosidase inclusion bodies in Escherichia coli. Aust. J. Biotechnol. 3: 28-32