DOI QR코드

DOI QR Code

Growth Behavior of InGaN/GaN Quantum Dots Structure Via Metal-organic Chemical Vapor Deposition

유기금속기상증착법에 의한 InGaN/GaN 양자점 구조의 성장거동

  • 정우광 (국민대학교 공과대학 신소재공학부) ;
  • 장재민 (매그나칩 반도체) ;
  • 최승규 (서울반도체) ;
  • 김진열 (국민대학교 공과대학 신소재공학부)
  • Published : 2008.10.27

Abstract

Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with $1{\sim}2nm$ height and $40{\sim}50nm$ diameter were formed by the S-K growth mode. Dome shape InGaN dots with $200{\sim}400nm$ diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).

Keywords

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwase, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, Jpn. J. Appl. Phys. Part 2, 36, L1059 (1997) https://doi.org/10.1143/JJAP.36.L1059
  2. V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtse, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova and J. Graul, Phys. Stat. Sol. (b), 229, R1 (2002) https://doi.org/10.1002/1521-3951(200202)229:33.0.CO;2-O
  3. W. -G. Jung, S. -H. Jung, P. Kung and M. Razeghi, Nanotechnology, 17(1), 54 (2006) https://doi.org/10.1088/0957-4484/17/1/010
  4. K. Tachibana, T. Someya and Y. Arakawa, Appl. Phys. Lett., 74(3), 393 (1999) https://doi.org/10.1063/1.123078
  5. K. Tachibana, T. Someya, Y. Arakawa, R. Werner and A. Forchel, Appl. Phys. Lett., 75(17), 2605 (1999) https://doi.org/10.1063/1.125092
  6. O. Moriwaki, T. Someya, K. Tachibana, S. Ihisda and Y. Arakawa, Appl. Phys. Lett., 76(17), 2361 (2000) https://doi.org/10.1063/1.126346
  7. Y. K. Su, S. J. Chang, L. W. Ji, C. S. Chang, L. W. Wu, W. C. Lai, T. H. Fang and K. T. Lam, Semicond. Sci. Technol., 19, 389 (2004) https://doi.org/10.1088/0268-1242/19/3/016
  8. H. Hirayama, S. Tanaka, P. Ramvall and Y. Aoyagi, Appl. Phys. Lett., 72(14), 1736 (1998) https://doi.org/10.1063/1.121168
  9. Y. Arakawa, Phys. Stat. Sol. (a) 188, 37 (2001) https://doi.org/10.1002/1521-396X(200111)188:1<37::AID-PSSA37>3.0.CO;2-Q
  10. B. Sherliker, M. P. Halsall, P. D. Buckle, P. J. Parbrook and T. Wang, Appl. Phys. Lett., 88, 122115 (2006) https://doi.org/10.1063/1.2186973
  11. P. M. Petroff and G. Medeiros-Ribeiro, MRS Bull., 21, 50 (1996)
  12. I. Daruka and A.-L. Barabsi, Phys. Rev. Lett., 79, 3708 (1997) https://doi.org/10.1103/PhysRevLett.79.3708
  13. J. A. Venables, G. D. T. Spiller and M. Hanbucken, Rep. Prog. Phys.. 47, 399 (1984) https://doi.org/10.1088/0034-4885/47/4/002
  14. B. Lewis and D. S. Campbell, J. Vac. Sci, Technol., 4, 209 (1967) https://doi.org/10.1116/1.1492548
  15. H. J. Kim, H. Na, S. Y. Kwon, H. C. Seo, H. J. Kim, Y. Shin, K. H. Lee, D. H. Kim, H. J. Oh, S. Yoon, C. Sone, Y. Park and E. Yoon, J. Cryst. Growth, 269, 95 (2004) https://doi.org/10.1016/j.jcrysgro.2004.05.039
  16. H. J. Kim, S. Y. Kwon, H. J. Kim, H. Na, Y. Shin, K. H Lee, H. S. Kwak, Y. H. Cho, J. W. Yoon, H. Cheong and E. Yoon, Phys. Stat. Sol. (c), 4, 112 (2007) https://doi.org/10.1002/pssc.200673558
  17. M. Jetter, V. Perez-Solorzano, Y. Kobayashi, M. Ost, F. Scholz and H. Schweizer, Phys. Stat. Sol. (a) 192, 91 (2002) https://doi.org/10.1002/1521-396X(200207)192:1<91::AID-PSSA91>3.0.CO;2-C