DOI QR코드

DOI QR Code

Wetting Behavior of Molten Salt on the Ceramic Filter Separators for Thermal Batteries

열전지용 세라믹 필터 분리판내 용융염의 젖음 거동

  • 조광연 (요업기술원 나노소재응용본부) ;
  • 류도형 (요업기술원 나노소재응용본부) ;
  • 허승헌 (요업기술원 나노소재응용본부) ;
  • 신동근 (요업기술원 나노소재응용본부) ;
  • 김현이 (서울대학교 재료공학부) ;
  • 최종화 (국방과학연구소 제4기술연구본부) ;
  • 정해원 (국방과학연구소 제4기술연구본부)
  • Published : 2008.07.31

Abstract

Ceramic Fiber separator is the promising material for thermal battery system because it reduces the production cost and offers the potential to a new application compared to a pellet type electrolyte. The molten salt electrolytes for thermal battery were prepared by the impregnation of the commercial glass filters such as GF-A, C and F (Whatman, USA) with two types of molten-lithium salts, LiCl-KCl and LiK-LiBr-LiF. The wetting properties were evaluated by wetting balance test and wetting angle measurement. The wetting behaviors were strongly affected by the composition of the molten salts and the pore structure of the glass separators. The optimum wetting conditions for maximum loading and effective retention of the molten electrolyte were also studied.

Keywords

References

  1. P. Masset and R. A. Guidotti, 'Thermal Activated (thermal) Battery Technology, Part II. Molten Salt Electrolytes,' J. Power Sources, 164 397-414 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.080
  2. R. A. Guidotti and P. Masset, 'Thermally Activated ('thermal') Battery Technology Part I: An Overview,' J. Power Sources, 161 1443-49 (2006) https://doi.org/10.1016/j.jpowsour.2006.06.013
  3. P. Butler, C. Wagner, R. Guidotti, and I. Francis, 'Long-life, Multi-tap Thermal Battery Development,' J. Power Sources, 136 240-45 (2004) https://doi.org/10.1016/j.jpowsour.2004.03.034
  4. S. S. Zhang, 'A Review on the Separators of Liquid Electrolyte Li-ion Batteries,' J. Power Sources, 164 351-64 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.065
  5. P. Masset, S. Schoeffert, J. Y. Poinso, and J. C. Poignet,, 'Retained Molten Salt Electrolytes in Thermal Batteries,' J. Power Sources, 139 356-65 (2005) https://doi.org/10.1016/j.jpowsour.2004.07.009
  6. R. Ponnappan and T. S. Ravigururajan, 'Contact Thermal Resistance of Li-ion Cell Electrode Stack,' J. Power Sources, 129 7-13 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.006
  7. B. Culpin, 'Thermal Runaway in Valve-regulated Lead-acid Cells and the Effect of Separator Structure,' J. Power Sources, 133 79-86 (2004) https://doi.org/10.1016/j.jpowsour.2003.09.078
  8. J. SAUNIER, F. ALLOIN, J. Y. SANCHEZ, and L. MANIGUET, 'Plasticized Microporous Poly(vinylidene fluoride) Separators for Lithium-Ion Batteries. III. Gel Properties and Irreversible Modifications of Poly(vinylidene fluoride) Membranes under Swelling in Liquid Electrolytes,' J. Power Sources, 42 2308-17 (2004)
  9. P. Masset, 'Iodide-based Electrolytes: A Promising Alternative for Thermal Batteries,' J. Power Sources, 160 688-97 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.091
  10. J. Y. Park, S. M. Hong, C. S. Kang, and J. P. Jung, 'Analysis of Wetting Force of Solder on One Side Coated Cu/Cr-Si Substrate Using Wetting Balance Method,' J. Kor. Inst. Met. & Mater., 38 1553-58 (2000)

Cited by

  1. The effect of the degree of ionicity of ceramic materials on their wettability by melted sodium chloride vol.78, pp.1, 2016, https://doi.org/10.1134/S1061933X16010087
  2. Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts vol.24, pp.5, 2017, https://doi.org/10.4150/KPMI.2017.24.5.364