Luminescence characterization of $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ red phosphor by rapid microwave heating synthesis

급속 microwave 열처리 방법으로 합성한 $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 특성

  • Park, W.J. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Song, Y.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Moon, J.W. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yoon, D.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 박우정 (성균관대학교 신소재공학부) ;
  • 송영현 (성균관대학교 신소재공학부) ;
  • 문지욱 (성균관대학교 신소재공학부) ;
  • 윤대호 (성균관대학교 신소재공학부)
  • Published : 2008.08.31

Abstract

$Eu^{3+}$ and $Bi^{3+}$ co-doped $YVO_4$ phosphors were produced by a microwave heating process. When the microwave heating method was synthesized,. the particle size was very small and the particles tended to agglomerate. However, as the heating time increased, the particle size increased and the agglomeration decreased. The emission spectrum exhibited a weak band for $^5D_0{\longrightarrow}^7F_1$ at 594.91 and 602.3 nm and strong sharp peaks at 616.7 and 620.0 nm due to the $^5D_0{\longrightarrow}^7F_2$ transition of $Eu^{3+}$. Microwave heating synthesis can provide a product without long time heating as well as good homogeneous distribution of activators.

본 연구에서는 자외선 영역에서 우수한 발광강도를 가지는 적색 형광체를 얻기 위하여 microwave 급속 열처리법으로 합성하여 $Eu^{3+}$$Bi^{3+}$가 도핑된 $YVO_4$의 발광특성을 관찰하였다. Microwave 급속 열처리시 입자의 크기는 매우 미세하며, 응집이 매우 심하였으나 열처리 유지시간이 증가할수록 입자 크기는 증가하고 응집현상은 개선되는 경향을 나타내었다. $YVO_4$: $Eu^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 peak는 $Eu^{3+}$ ion의 영향에 의해 594.9 nm와 602.3 nm에서 $^5D_0{\longrightarrow}^7F_1$ 전자 천이에 의한 약한 발광 peak와 616.7 nm와 620.0 nm에서 $^5D_0{\longrightarrow}^7F_2$ 전자 천이에 의한 강한 발광 peak이 관찰 되었다. Microwave 급속 열처리법을 형광체 합성시 장시간 열처리 시간이 필요하지 않으면서 균일한 activator의 확산으로 인하여 발광특성을 향상시키는 것을 확인 할 수 있었다.

Keywords

References

  1. W.H. Sutton, "Microwave processing of ceramic materials", Am. Ceram. Soc. Bull. 68 (1989) 376 https://doi.org/10.1111/j.1151-2916.1985.tb10146.x
  2. L.M. Sheppard, "Manufacturing ceramics with microwaves: The potential for economical production", Am. Ceram. Soc. Bull. 67 (1988) 1656
  3. D.H. Kim, S.R. Oh and C.H. Kim, "Densification and grain growth of alumina heated by microwave", J. Korean Ceram. Soc. 29 (1992) 305
  4. R.D. Blake and T.T. Meek, "Microwave processed composite materials", J. Mater. Sci. Lett. 5 (1986) 1097 https://doi.org/10.1007/BF01742210
  5. S.S. Park, J.H. Kim, S.W. Kim, S.H. Lee, J.H. Park and H.C. Park, "Microwave synthesis of alpha alumina platelets using flux method", J. Korean Ceram. Soc. 39 (2002) 473 https://doi.org/10.4191/KCERS.2002.39.5.473
  6. T.T. Meek, R.D. Blake and J.J. Petrovic, "Microwave sintering of Al2O3-SiC whisker composites", Ceram. Eng. Sci. Proc. 8 (1987) 861 https://doi.org/10.1002/9780470320402.ch44
  7. J.D. Katz, R.D. Blake and J.J. Petrovic, "Microwave sintering of alumina silicon carbide composites at 2.45 and 60 GHz", Ceram. Eng. Sci. Proc. 9 (1988) 725 https://doi.org/10.1002/9780470310496.ch23
  8. R.F. Hill, R. Danzer and R.T. Paine, "Synthesis of aluminum oxide platelets", J. Am. Ceram. Soc. 84 (2001) 514 https://doi.org/10.1111/j.1151-2916.2001.tb00692.x
  9. S. Hashimoto and A. Yamaguchi, "Formation of porous aggregations composed of $Al_{2}O_{3}$ platelets using potassium sulfate flux", J. Euro. Ceram. Soc. 19 (1999) 335 https://doi.org/10.1016/S0955-2219(98)00202-7
  10. S. Hashimoto and A. Yamaguchi, "Synthesis of $\alpha-Al_{2}O_{3}$ platelets using sodium sulfate flux", J. Mater. Res. 14 (1999) 4667 https://doi.org/10.1557/JMR.1999.0631
  11. S. Shinoya, et al., Phosphor Handbook, CRC Press, New York (1999)
  12. W.J. Park, M.K. Jung, T. Masaki, S.J. Im and D.H. Yoon, "Characterization of $YVO_4$: $Eu^{3+}$, $Sm^{3+}$ red phosphor quick synthesized by microwave rapid heating method", Mater. Sci. Eng. B 146 (2008) 95 https://doi.org/10.1016/j.mseb.2007.07.090