Determination of Focal Laws for Ultrasonic Phased Array Testing of Dissimilar Metal Welds

  • Published : 2008.10.30

Abstract

Inspection of dissimilar metal welds using phased array ultrasound is not easy at all, because crystalline structure of dissimilar metal welds cause deviation and splitting of the ultrasonic beams. Thus, in order to have focusing and/or steering phased array beams in dissimilar metal welds, proper time delays should be determined by ray tracing. In this paper, we proposed an effective approach to solve this difficult problem. Specifically, we modify the Oglivy's model parameters to describe the crystalline structure of real dissimilar metal welds in a fabricated specimen. And then, we calculate the proper time delay and incident angle of linear phased array transducer in the anisotropic and inhomogeneous material for focusing and/or steering phased array ultrasonic beams on the desired position.

Keywords

References

  1. Anderson, M., Cumblidge, S. and Doctor, S. (2004) Through Weld Testing of Wrought Stainless Steel Piping Using Phased Array Ultrasonic Probes, 16th World Conference on NDT, CD-ROM, Montreal, Canada
  2. Apfel, A., Moysan, J., Corneloup, G. and Chassignole, B. (2004) Simulations of the Influence of the Grains Orientations on Ultrasounds, 16th World Conference on NDT. http://www.ndt.net/article/wcndt2004/html/htmltxt/414_moysan.htm
  3. Becache, E., Joly, P. and Tsogka, C. (2000) An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems, SIAM J. Numer. Anal, Vol. 37, pp. 1053-1084 https://doi.org/10.1137/S0036142998345499
  4. Buttram, Jonathan D. (2007) Manual Ultrasonic Phased Array Technique for Accurate Through-Wall Sizing of Planar Discontinuities in Dissimilar Metal Welds, Materials Evaluation, Vol. 65, No. 3, pp. 62-66
  5. Chassignole, B., Villard, D., Dubuget, M., Baboux, J. C. and Guerjouma, R. El (2000) Characterization of Austenitic Stainless Steel Welds for Ultrasonic NDT, Review of Progress in QNDE., Vol. 20, pp. 1325-1332
  6. Henneke, E. G. (1972) Reflection-Refraction of a Stress Wave at a Plane Boundary between Anisotropic Media, J. Acoust. Soc. Am. Vol. 51, pp. 210-217 https://doi.org/10.1121/1.1912832
  7. Joly, E. and Tsogka, P. C. (2001) Application of the Fictitious Domain Method to 2D Linear Elastodynamic Problems, J. Comput Acoust., Vol. 9, pp. 1175-1202 https://doi.org/10.1142/S0218396X01000966
  8. Ogilvy, J. A. (1985) Computerized Ultrasonic Ray Tracing in Austenitic Steel, NDT&E International, Vol. 18, pp. 67-77 https://doi.org/10.1016/0308-9126(85)90100-2
  9. Ogilvy, J. A. (1990) A Layered Media Model for Ray Propagation in Anisotropic, Inhomogeneous Materials, Appl. Math. Mod. Vol. 14, pp. 237-247 https://doi.org/10.1016/0307-904X(90)90014-V
  10. Rokhlin, S. I.. Bolland, T. K. and Adler, L. (1986) Reflection and Refraction of Elastic Waves on a Plane Interface between Two Generally Anisotropic Media, J. Acoust. Soc. Am. Vol. 79, No. 4, pp. 210-217
  11. Spies, M. (2000) Modeling of Transducer Fields in Inhomogeneous Anisotropic Materials Using Gaussian Beam Superposition, NDT&E International, Vol. 33, pp. 155-162 https://doi.org/10.1016/S0963-8695(99)00036-5
  12. Zhao, X-Y., Song, S-J., Kim, H-J., Gang, T., Kang, S-C., Choi, Y-H., Kim, K. and Kang, S-S. (2007) Determination of Ultrasonic Beam Incident Angle and Position for Flaw Detection in Anisotropic and Inhomogeneous Weldments by Ray Tracing, Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 3, pp. 231-238