Geotechnical Properties of Pelagic Red Clay in Northeast Equatorial Pacific

북동태평양 원양성 적점토의 지질공학적 특성에 관한 연구

  • Chi, Sang-Bum (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Lee, Hyun-Bok (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Hyeong, Ki-Seong (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Ju, Se-Jong (Marine Living Resources Research Department, KORDI) ;
  • Lee, Gun-Chang (Deep-sea & Marine Georesources Research Department, KORDI) ;
  • Ham, Dong-Jin (Deep-sea & Marine Georesources Research Department, KORDI)
  • 지상범 (한국해양연구원 심해.해저자원연구부) ;
  • 이현복 (한국해양연구원 심해.해저자원연구부) ;
  • 형기성 (한국해양연구원 심해.해저자원연구부) ;
  • 주세종 (한국해양연구원 해양생물자원연구부) ;
  • 이근창 (한국해양연구원 심해.해저자원연구부) ;
  • 함동진 (한국해양연구원 심해.해저자원연구부)
  • Published : 2008.08.31

Abstract

In order to understand the physical properties of deep-sea sediments, which mainly consist of pelagic red clays, sediment samples were collected at 24 stations using a multiple corer in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific. The sampled sediment cores were examined for the mass physical properties(i.e. grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity) and the geotechnical properties(i.e. shear strength and consistency limits) with the content of biogenic opal and mineral composition. Although KR1 and KR2 areas on the same latitude are logitudinally far from each other, the mass physical properties of these areas are not distinctly different except for shear strengths. The maximum shear strength of surface sediments in KR2 area is higher than that in KR1 due to the appearance of a consolidated lower layer(Unit 3) in the sediment core from KR2.

북동태평양 클라리온-클리퍼톤 균열대(Clarion-Clipperton Fracture Zone, C-C지역) 사이의 북쪽지역에 위치한 연구지역 원양성 적점토 표층퇴적물의 특성파악을 위해 기계적 교란이 적은 다중주상시료채취기로 24개 정점에서 시료를 채취하였다. 채집된 퇴적물 시료의 입도, 함수율, 밀도, 공극률 등 지표 특성과 전단강도, 컨시스턴시 한계 등의 지질공학적 특성 그리고 생물기원 오팔함량 및 광물조성을 분석하였다. 원양성 적점토가 분포하는 광범위한 연구지역($15^{\circ}45'{\sim}16^{\circ}55'N,\;125^{\circ}20'{\sim}134^{\circ}10'W$) 퇴적물의 지표 특성 및 광물학적 특성은 동일 경도 상에서 동측지역과 서측지역 사이의 큰 거리차이에도 불구하고 매우 균일한 특성을 보인다. 단지 표층퇴적물의 전단강도는 KR1 지역에 비해 KR2지역이 고화된 특성을 보이는데, 이것은 KR2 지역에서 나타나는 하부 Unit 3의 영향에 의한 것으로 판단된다.

Keywords

References

  1. 지상범, 2003. 북동태평양 심해저 퇴적물의 지질공학적 특성 및 망간단괴 분포 특성. 인하대학교 대학원 박사학위 논문, 185pp
  2. 지상범, 이현복, 김종욱, 형기성, 고영탁, 이경용, 2006. 북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구. 자원환경지질, 39(6): 739-752
  3. 해양수산부, 2002. 2001 심해저 광물자원탐사 보고서, 1권, CRPM088-00-1387-5, 559 pp
  4. 해양수산부, 2007. 심해저 광물자원 탐사 보고서(1). 해양수산부보고서 CRPM38200-1838-5, 595 pp
  5. AMR/PREUSSAG. 1985/1976. Geotechnical properties of surface sediment in the CCZ, unpublished report (in German)
  6. Andreev, S.I. and L.I. Anikeeva, 1989. The study of the composition of manganese nodules and other raw materials of the world ocean and of their environment of deposition. unpublished report Vniiokeangeologiya Leningrad
  7. ASTM, 1980. Annual book of ASTM standards, 19, natural building stones (Soil and rocks. American Society for Testing Materials), Philadelphia, 632 pp
  8. Baltzer, A., P. Cochonat, and D.J.W. Piper, 1994. In situ geotechnical characterization of sediments on the Nova Scotian Slope, eastern Canadian continental margin. Mar. Geol., 120: 291-308 https://doi.org/10.1016/0025-3227(94)90063-9
  9. Bennett, R.H., G.L. Freeland, D.N. Lambert, W.B. Sawyer, and G.H. Keller. 1980. Geotechnical properties of surficial sediments in a mega-corridor: U.S. Atlantic continental slope, rise, and deep-sea basin. Mar. Geol., 38: 123-140 https://doi.org/10.1016/0025-3227(80)90055-9
  10. Berger, W.H., C.G. Adeleck, and L.A. Mayer, 1976. Distribution of carbonate in surface sediment of the Pacific Ocean. J. of Geophysical Research, 81: 2617-2627 https://doi.org/10.1029/JC081i015p02617
  11. Biscaye, P.E., 1965. Mineralogy and sedimentation of Recent deepsea clay in the Atlantic Ocean and adjacent seas and oceans, Geological Society of America Bulletin, 76: 803-831 https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  12. Booth, J.S., W.J. Winter, L.J. Poppe, J. Neiheisel, and R.S. Dyer, 1989. Geotechnical, geological, and selected Radionucleid retention characteristics of the radioactive waste disposal site near the Farallon Islands. Marine Geotechnology, 8: 111-132 https://doi.org/10.1080/10641198909379863
  13. Brown, J., A. Colling, D. Park, J. Phillips, D. Rothery, and J. Write, 1989. Ocean chemistry and deep-sea sediments. G. Bearman. pergamon press, 134 pp
  14. Dymond, J., M. Lyle, B. Finney, D.Z. Piper, K. Murphy, R. Conrad, and N. Pisias, 1984. Ferromanganese nodules from MANOP site H, S and R-control of mineralogical and chemical compositon by multiple accretionary process. Geochim. Cosmochim. Acta, 48: 931-949 https://doi.org/10.1016/0016-7037(84)90186-8
  15. Feung, L., H.U. Oebius, B. Grupe, and H.J. Becker. 1997. Basic Research on characteristics of Deep-sea sediment clouds produced by marine mining. International Symposium on Environmental Studies for Deep-Sea Mining Proceedings. Japan, pp. 109-126
  16. Fork, R.L., 1968. Petrology of Sedimentary Rocks. Hemphills' Pub. Co., Austin, Taxas, 170 pp
  17. Francheteau, J., C.G.A. Harrison, J.G. Sclater, and M.L. Richards, 1979. Magnetization of Pacific sea-mounts: A preliminary polar cure for the northeastern Pasific. Journal of Geophysical Research, 75: 2035-2062 https://doi.org/10.1029/JB075i011p02035
  18. Grupe, B., H.J. Becker, and H.U. Oebius, 2001. Geotechnical and sedimentological investigations of deep-sea sediments from a manganese nodule field of the Peru Basin, Deep-sea Research II, 48: 3593-3608 https://doi.org/10.1016/S0967-0645(01)00058-3
  19. Hein, J.R. and H.W. Yeh, and E. Alexander, 1979. Origin of iron-rich montmorillonite from the manganese nodule belt of the North Equatorial Pacific, Clays and Clay Minerals, 27: 185-194 https://doi.org/10.1346/CCMN.1979.0270303
  20. Hyeong, K. S., S.H. Park, C.M. Yoo, and K.H. Kim, 2005. Mineralogical and geochemical compositions of the eolian dust from the northeast equatorial Pacific and their implications on paleolocation of the Intertropical Convergence Zone. Paleoceanograpy, PA2010A
  21. Hyeong, K. S., C.M. Yoo, J Kim, S.B. Chi, and K.H. Kim, 2006. Flux and grain size variation of eolian dust as a proxy tool for the paleo-position of the Intertropical Convergence Zone in the northeast Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 214-223 https://doi.org/10.1016/j.palaeo.2006.03.011
  22. IFREMER, 1989. Evaluation et etude des moyens necessaires a l'exploitation des nodules polymetalliques, Rapport final, TOME I, p. 1/1-5/10
  23. Kadko, D., 1985. Late Cenozoic sedimentation and metal deposition in the north Pacific. Geochimica et Cosmochimica Acta, 49: 651-661 https://doi.org/10.1016/0016-7037(85)90160-7
  24. Keller, G.H. and Y. Yincan, 1985. Geotechnical properties of surface and near-surface deposits in the East China Sea. Continental Shelf Research, 4: 159-174 https://doi.org/10.1016/0278-4343(85)90027-5
  25. Kennett, J.P., 1982. Marine geology. Prentice-Hall Inc., Englewood Cliffs, N.J., 813 pp
  26. Munsell, 1988. Soil Color Chart. MacBeth Div., Kolmorgen Corp., Mayland
  27. Rawson, M.D. and W.B.F. Ryan, 1978. Oceanic floor sediment and polymetallic nodules. World oceanic floor panorama, Lamont-Doherty Geol. Obs., Palisades (map)
  28. Richards, A.F. and J.M. Parks. 1975. Marine geotechnology. In: Average sediment properties, selected literature and review of consolidation, stability, and bioturbation geotechnical interactions in the benthic boundary layer, ed. by McCave, I.N., Proceedings of the NATO benthic boundary layer conference: Plenum Press, New York
  29. Richards, A.F. and J.M. Parks. 1977. Geotechnical predictor equstions for east central north Pacific nodule mining. OTC 2773, Offshore Technology Conference Proceedings, 1: 377-386
  30. Schultz, L.G., 1964. Quantitative interpretation of mineralogical composition from x-ray and chemical data for the Pierre Shale. U.S. Geological Survey Prof. Paper 391-C, 31 pp
  31. Shepard, F.P., 1954. Nomenclature based on san-silt-clay ratios. Journal of Sedimentary Petrology, 24: 151-158
  32. Thiel, H. and G. Schriever, 1993. Environmental consequences of deep-sea mining. International Challenges, 13: 54-70
  33. THETIS, 1992. The environmental impact of deep sea mining, section I. Nodules and environment. 283 pp
  34. Tisort, J.P., 1981. Analysis of physical and mechanical properties of deep-sea sediments from potential manganese nodule mining areas in the north central Pacific. OTC 4132, Offshore Technology Conference Proceedings, 139-146
  35. van Andel, T.H., G.R. Heath, and R.H. Bennet, 1973. Geological results of Leg 163: the central equatorial Pacific, west of the East Pacific Rise. Initial Report of Deep-Sea Drilling Project, 16: 411-472
  36. Weber, M.E., U. von Stackelberg, V. Marchig, M. Wiedicke, and B. Grupe, 2000. Variability of surface sediments in the Peru basin: dependence on water depth, productivity, bottom water flow, and seafloor topography. Mar. Geol., 163: 169-184 https://doi.org/10.1016/S0025-3227(99)00103-6