DOI QR코드

DOI QR Code

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study

Co2TiSn(001) 표면의 자성 및 반쪽금속성에 대한 제일원리연구

  • Jin, Y.J. (Department of Physics, Inha University) ;
  • Lee, J.I. (Department of Physics, Inha University)
  • Published : 2008.08.31

Abstract

The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).

Full-Heusler 화합물인 $Co_2TiSn$(001) 표면의 전자구조, 자성 및 반쪽금속성을 일반기울기근사(GGA)를 채택한 총퍼텐셜선형보강평면파동(FLAPW)방법을 이용하여 이론적으로 연구하였다. $Co_2TiSn$ 화합물의 (001)방향에서 2가지 가능한 표면, 즉 Co 원자들로 끝나는 면(Co-term)과 TiSn 원자들로 끝나는 면(TiSn-term)을 고려하였다. 계산된 상태밀도로부터 Co-term의 표면에서는 반쪽금속성이 깨어졌지만 TiSn-term의 표면에서는 반쪽금속성이 유지됨을 알 수 있었다. Co-term의 경우 표면 Co 원자의 좌표수가 줄어들면서 Co 원자의 채워진 소수 스핀 d-상태가 높은 에너지 영역으로 이동하여 페르미에너지에 걸치면서 반쪽금속성이 깨어진다. TiSn-term에서는 표면상태가 페르미에너지 바로 아래에 위치하면서 소수 스핀 띠간격이 가운데 층에 비하여 많이 줄어들었다. Co 원자의 자기모멘트는 Co-term의 표면에서는 내부 층에 비하여 약 10 % 증가한 1.16 ${\mu}_B$의 값을 가지는 반면 TiSn-term의 표면 바로 아래층에서는 내부 층과 비슷한 값(1.03 ${\mu}_B$)을 가졌다.

Keywords

References

  1. G. Prinz and K. Hathaway, Physics Today, 48, 24 (1995)
  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001) https://doi.org/10.1126/science.1065389
  3. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 323 (2004) https://doi.org/10.1103/RevModPhys.76.323
  4. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, 2024 (1983) https://doi.org/10.1103/PhysRevLett.50.2024
  5. I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys., 39, 765 (2006) https://doi.org/10.1088/0022-3727/39/5/S01
  6. H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D: Appl. Phys., 40, 1507 (2007) https://doi.org/10.1088/0022-3727/40/6/S01
  7. I. Galanakis, K. Ozdogan, E. Sasioglu, and B. Aktas, Phys. Rev. B, 75, 092407 (2007) https://doi.org/10.1103/PhysRevB.75.092407
  8. Y. J. Jin and J. I. Lee, J. Korean Phys. Soc., 51, 155 (2007) https://doi.org/10.3938/jkps.51.155
  9. P. J. Webster and K. R. Ziebeck, J. Phys. Chem. Solids, 34, 1647 (1973) https://doi.org/10.1016/S0022-3697(73)80130-1
  10. P. G. van Engen, K. H. J. Buschow, and M. Erman, J. Magn. Magn. Mater., 30, 374 (1983) https://doi.org/10.1016/0304-8853(83)90079-3
  11. S. C. Lee, T. D. Lee, P. Blaha, and K. Schwarz, J. Appl. Phys., 97, 10C307 (2005)
  12. H. C. Kandpal, V. Ksenofontov, M. Wojcik, R. Seshadri, and C. Felser, J. Phys. D: Appl. Phys., 40, 1587 (2007) https://doi.org/10.1088/0022-3727/40/6/S13
  13. R. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science, 282, 85 (1998) https://doi.org/10.1126/science.282.5386.85
  14. D. Orgassa, H. Fujiwara, T. C. Schulthess, and W. H. Butler, Phys. Rev. B, 60, 13237 (1999) https://doi.org/10.1103/PhysRevB.60.13237
  15. G. A. de Wijs and R. A. de Groot, Phys. Rev. B, 64, 020402 (2001) https://doi.org/10.1103/PhysRevB.64.020402
  16. S. J. Hashemifar, P. Kratzer, and M. Scheffler, Phys. Rev. Lett., 94, 096402 (2005) https://doi.org/10.1103/PhysRevLett.94.096402
  17. Y. J. Jin and J. I. Lee, Phys. Stat. Sol. (a) accepted (2008)
  18. Y. Byun and J. I. Lee, J. of Kor. Mag. Soc., 15(5), 257 (2005) https://doi.org/10.4283/JKMS.2005.15.5.257
  19. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78, 1396(E) (1997)
  22. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  23. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  24. D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1977) https://doi.org/10.1088/0022-3719/10/16/019