Journal of Korea Multimedia Society Vol. 11, No. 6, JUNE 2008(pp. 755-763)

A Hybrid Visibility Determination Method
to Get Vector Silhouette

Xuemei Lu", Kijung Lee", Taegkeun Whangbom

ABSTRACT

Sithouette is useful in computer graphics for a number of techniques such as non-photorealistic render—
ing, silhouette clipping, and blueprint generating. Methods for generating sithouette are classified into
three categories: image-based, object-based, and hybrid-based. Hybrid-based method is effective in
terms of time complexity but spatial coherence problem still remains. In this paper, we proposed a new
hybrid-based method which produces 3D data for silhouette and also guarantees no spatial coherence
problem. To verify the efficiency of the proposed algorithm, several experiments are conducted for various
3D models from simple to quite complex. Results show that our algorithm generates no gap between
any two consecutive silhouette lines when the silhouette model is magnified significantly,

Key words: Silhouette, Vector Silhouette, Visibility Determination, Object Space, Depth Buffer

1. INTRODUCTION

Silhouette lines have played an important role
in the visual effect. Especially for non-photo-
realism rendering (NPR), which including car-
toons, volumetric shadows, toon shading, technical
illustrations, generating object silhouettes is an
important component. Many reverse engineering
works and architectural designs also need silhou-
ette lines to represent the basic shape of the model
Silhouette extraction as the first step of these ap-
plications, has attracted more and more re-
searchers work on it.

Corresponding Author : Taegkeun Whangbo, Address :

(461-701) 5-7 Saeromkwan, Kyungwon Univ., Bokjeong

-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do,

Korea, TEL : +82-31-750-5417, FAX : +82-32-757-9508,

E-mail : tkwhanghbo@kyungwon.ac.kr

Receipt date : May 1, 2007, Approval date : Nov. 12, 2007
Y Dept. of Computer Science, Kyungwon University

(E-mail ‘bingging_0703@hotmail.com)

" CTI of Kyungwon University

(E-mail : jem5758@empas.com)

Dept. of Computer Media, Kyungwon University

¥ This research was supported by the Ministry of

Cultural & Tourism and Korea Culture & Content

Agency, Seoul, Korea, under Supporting Project of

Culture Technology Institute.

i

Silhouette extraction algorithms include two
detection and
determination. Methods for generating silthouette

stages: silhouette visibility
are classified into three categories: image-based,
object-based, and hybrid-based {1). Image-based
method, which is pixel-based, is fast but less accu-
rate, and no metric information available. Object-
based produces 3D information for silhouette lines
but time-consuming, and spatial coherence prob-
lem may be occurred when removing invisible sil-
houette lines. Spatial coherence problem is a gap
between two consecutive silhouette lines. Hybrid~
based method, thus, has been proposed to solve
these problems, and is effective in terms of time
complexity but spatial coherence problem still
remains.

In Fig. 1, a reverse engineering sequence to gen-
erate blueprint for the heritages is shown. In the
first step, we need silhouette lines to depict the ba-
sic shape of the 3D heritage models, and they
should have no disconnected lines.

In this paper, we proposed a hybrid method to
do visibility determination, which can extract vec-
tor sithouette for generating blueprint of heritage
models. We use z-buffer but produce 3D data in

756 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 8, JUNE 2008

3D heritage model

Silhouette extraction

Generate blue print

Fig. 1. Vector silhouette extraction for generating blueprint.

ohject space. We consider the visibility of each
pixel on a silhouette line. The line and triangle have
different drawing methods, which leads to different
depth values and different projected pixels posi-
tions in z-buffer. We use a method with three
depth buffers to overcome this problem. Instead of
comparing the z-buffer values of an edge and the
z-buffer value of mesh model, we compare be-
tween an adjacent face and mesh model. We have
tested several mesh models with our method to
verify the efficiency. We can get the 3D data of
visible silhouette for generating blueprint. The
vector silhouette extracted using our method is ro-
bust, even enlarging the vector data many times,
there are no disconnected lines.

In this paper, we have a number of contributions
as follows:!

- Find out the reason that cause difference be-
tween line and triangle depth buffers’ values,
which is the main problem in image—based
and hybrid-based method.

- Propose an approach to erase the difference
between line and triangle depth buffers’ val-
ues and get silhouette edges.

- Propose a whole system in order to extract
silhouette lines for generating blueprint for
culture heritages.

The following parts of this paper are organized
as follows: Section 2 introduces some background
of this research. Section 3 gives out the detail of
our proposal. Section 4 is the experiment data. And
the last section is the conclusion and future work.

2. RELATED WORKS

Lu et al. [2] describe a visibility method to ex~
tract vector silhouette for generating blueprint of
culture heritages. The system includes four stages:
1. Building edge list from vertices and triangle in-
formation when loading mesh model; 2. Extract
silhouette edges for a certain view direction with
the Brute Force method to guarantee all the silhou-
ette will be detected; 3. Determine the visible sil-
houette lines and rendering; 4. Save the vector sil-
houette lines according to user's subscribe. Fig. 2
shows the algorithm sequence:

In this paper, we use the same algorithm se—
quence with Lu et. al [2], but propose a new hybrid
visibility determination method in step 3. We will
introduce the existing algorithms, especially Lu's
algorithm in the following part.

‘ Stage!: Build Edge List { g
g
J@ §
&
{ Stage?: Silhouette Detection f
i g
&
o
T
3
l Stage3: Visibility Determination ; 2
2
iy g
2
&
I
[Stageél: Vector Data Generation §

Fig. 2. Algorithm Sequence

A Hybrid Visibility Determination Method tc Get Vector Sithoustte 757

2.1 Build Edge List

Since the silhouette definition is view dependent,
we need to find all the edges from the vertices and
triangle information, which can be used in re-
al-time to extract the silhouette edges according
to view direction.

There are two ways to find all the edges [3].
The simple one is a two—passes method. The first
pass to find all the edges. The second pass to
match the triangles to edges. it is O(fCount?),
where fCount is the number of triangles. Using a
hash table to store edges and their indices, we can
achieve O(fCount) time with a single pass through
the triangles. But we should allocate about twice
as much space as we need to for the edges, since
each edge is shared by two triangles.

In Lu et al. [2}, they create the edge list using
two dimensional structure to control the memory
usage. The first dimensional of the structure has
the same size of vertex number in vertex index
sequence. Each element of the first dimensional ar-
ray is a link list, which contains the edge that com~
ing form this vertex. The space complexity of the
final edge list is exactly the number of edges.

They traverse all the triangles and get the end-
point indices and adjacent faces information for
each edge. For each triangle, there are three edges
which defined with two endpoints of this triangle.
We call these two indices as start point index and
end point index sequently. If the start point index
is less than the end point index, They check it has
been stored or not, if not we recognize it as an un~
referenced edge, and write it into our edge list, else
ignore it.

By the combination of our two dimensional data
structure and this one pass method, the time com-
plexity of building edge list is Q(fCount}, and the
space complexity is the exactly the number of all
edges.

2.2 Silhouette Edge Detection

A number of algorithms exist for extracting sil-

houette edges from polygonal models [4]. We use
the Brute Force method to guarantee that all the
silhouette edges can be found. This method re-
quires testing the visibility of the two adjacent
faces of each edge. At runtime, for every frame,
we traverse the edge list. If one of the adjacent
face is back facing and another is front facing, this
edge will be a contour edge. If both the two ad-
jacent faces are front facing face, and the dihedral
angle is smaller than some threshold, it will be an
crease edge. We write these edges into the silhou-
ette edge list.

After building edge list and extracting silhouette
with Brute Force algorithm, we need to test the
visibility of each edge to extract the visible vector
sithouette lines.

2.3 Visibility Determination

There are three general ways exist to attack
hidden line removal problem. The visible line algo-
rithm presented by Appel [5], which is frequently
used in the context of sithouette algorithms. But
these object space silhouette visibility tests are
usually expensive [6]. A fast but less accurate way
of determining silhouette edge visibility is an im~
age space approach. However, in many applications
only pixel accuracy is not enough [7.8]. Thus, com~
bining object space and image space approaches in
a hybnd algorithm can achieve significant speedup
for the visibility test.

Northrup and Markosian {9] use an ID buffer in
addition to regular rendering with a z-buffer to de-
termine silhouette edge visibility. Isenberg et al.
[10] use a similar approach, in principal. They note
that simply scan converting silhouette edges and
comparing the compufed pixels with values in the
z-buffer is somewhat numerically unstable. Thus,
they suggest not only looking at the pixel's exact
position but also at its 8-pixel neighborhood for
pixels that are further away than the tested. This
significantly reduces the numerical problems. But
there are disconnected lines in the rendering result.

758 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 6, JUNE 2008

Actually the unstable of z-buffer caused by dif-
ferent rasterization method between line and tri-
angle [2]. Lu’'s algorithm calculate the difference
between z-buffer values on same pixel position for
line and triangle to deal with the different z-buffer
values and different pixel position problem caused
by the rasterization method. But since for each
pixel the difference should be calculated, it has a
high time complexity. In this paper, we proposed
a more easy way to solve this problem. And the
triangle rasterization depends on the projected
area, this cause the disconnect problem in z-buffer.
Qur proposal also deal with this problem. We will
explain these problems more detail in section 4, and
propose our method to solve them.

2.4 intersection Coordinate and Vector Data
File

After checking the visibility of all pixels on an
edge, we can decide the visibility of the whole edge.
If all the pixels are visible, this edge is visible; if
all the pixels are invisible, this edge is invisible;
if partly of the pixels are visible, we need to calcu-
late the intersection coordinates to depart the visi-
ble part and the invisible part on this edge. Then
we can write the visible silhouette lines into vector
image [111.

3. VISIBILITY DETERMINATION

We compare the depth buffer values for mesh
model and silhouette lines. We find that the values

on same pixel positions are different. So we can
not compare them directly. When we rotate the
model, if the triangle area is small, there are no
depth buffer values on some pixel positions. In this
part we research the reasons about this three prob-
lems, and propose a new visibility determination
method.

3.1 Three Rasterization Problems in Visibility
Determination

The frist two problems are caused by difference
between line rasterization and triangle rasterization.
We explain these two problems firstly.

To examine the visible of segment edge, we take
each silhouette edge separately. We compare the
depth buffer values in Fig. 3 (A) and Fig. 3 (C).
Obviously the line P.Py, is partly hidden by the
cube. So only the visible part of the line in Fig.
3 (A) has the same depth buffer values as in Fig.
3 (C). Unfortunately the values are totally not
same. We use a media buffer for an adjacent tri-
angle instead of line. We compare the depth buffer
values in Fig. 3 (A) and Fig. 3 (B) on the projected
pixel position in Fig. 3 (C). Anocther problem arises,
there are no depth buffer values in Fig. 3 (B) while
there are buffer values in Fig. 3 (C) in some case.
See the position which indicated by circle in Fig.
3 (B) and Fig. 3 (C).

First, the projected pixel positions of line and
triangle are different, as shown in Fig. 4. The tri-
angle rasterization uses a scan line filling method.
No matter line rasterization uses DDA line drawing

CHEREN

A: Z-buffer for model

B: Z-buffer for an adjacent triangle of testing edge

C: Z-buffer for testing edge

Fig. 3. Different pixel position between line and triangle rasterization of the testing silhouette edge

A Hybrid Visibility Determination Method to Get Vector Silhouette 759

S
k-
w
5
AWr-y
K.

e
<]
.
e
3
QoI
I

i
A
L]
A
-

@
$i8)
*ne

L.
1
»-

¢ [}

Fig. 4. Different projected pixel position

algorithm or Bresenham’s algorithm, the projected
pixel will have different positions {12,13].

Second, the depth buffer values on correspond-
ing pixel position are different.

From the OpengGL tutorial [14], we obtained
how the value is associated with rasterized line and
polygon, For basic line segment rasterization, let
the window coordinates of a produced fragment
center be given by Pa=(xq, va) and let start point
P.=(Xa, va) and end point Py=(x», ¥u). Set:

_(B-P)(B-B)

I P— P4 W

Note that t=0 at P. and t=1 at Py». The associated
value on pixel Ps can get by:

fr=0=8)f,+tf, (2)

fr is the interpolated depth values on line, fz and
f» are the data associated with the starting and
ending endpoints of the segment, respectively. For
basic polygon rasterization, let any point Pg within
the triangle or on the triangle’s boundary, we can
find &, 8 and 7 as:

Alpp,p,) Alpp,p,)

oo App) _
Appp)’ T Appp)

- Alppp)’

3

Where A(Imn) denotes the area in window coor-
dinates of the triangle with vertices I, m, and n de-
note a depth buffer value at Pa, Py, and P. as fa,
f, and f, respectively.

The next subsection will give the details to cal-
culate the depth buffer value. Then the value fr of
a datum at a fragment p produced by rasterizing
a triangle is given by

fr=of ,+ Bfy+f, @

The third problem arises because that the accu-
racy of triangle projection depends on the area of
triangle.

Because the triangle rasterization is based on the
triangle area, when project one triangle to the
screen, there maybe no rendering result, which
means all the depth buffer value of the pixels are
same as the background depth buffer values. Fig.
5 shows a case to indicate this situation. (a) The
triangle rasterization is based on triangle area,
there will no depth values on some projected pixel
when rotating the triangle. So we render two ad-
jacent triangles to make sure there are always
z-buffer values on the shared edge. (b) For two
triangles which share a endpoint only, there will
be a disconnects in rotating. {(c) By rendering the
adjacent riangles of the shared edge, we can make
sure there will be a depth value on projected pixel
position of this shared edge.

3.2 Our Visibility Determination Method

To determine visible silhouette segments, we

(b) Depth values on the shared edge position

{Q b .m

(¢) Depth value on the end point position.

Fig. 5. The triangle rasterization problem in rotation

760 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 6, JUNE 2008

propose a method with the help of three buffers.
we take each sithouetie edge separately, instead of
comparing depth values for mesh model and depth
values for line, we use a media depth buffer value
for the adjacent faces of this edge.

The visibility determination algorithm we pro-
posed is described as follows:

- Step-a' Render a mesh model and all sithou—
ette lines, and read depth buffer values into
array Bufferl.

- Step-b: Render a silhouette edge and read
depth values into Buffer?, and then render the
adjacent triangles of the two endpoints of
this edge, read depth buffer value into array
Buffer3.

- Step-c For each pixel in Buffer?2 which value
is not 1, (1 is the depth value for background)
compare the value in Buffer3 with the value
in Buffer] on same pixel position. If the val-
ues are same, we set this pixel visible, else
set this pixel invisible,

« Step-d: If the pixels we checked are all visi~
ble, this edge is whole visible. If all the pixels
are invisible, this edge is whole invisible. If
partly visible, we calculate the intersection
coordinate between visible and invisible part
on this edge.

- Step-e: If all the silhouette edges are
checked, stop; else go to step-b.

- Step-f Save the visible edge or partly visible
edge into files.

4. RESULTS

We have tested our framework on some heritage
models of Table 1. This table shows the number
of vertices, triangles, edges, silhouette edges, visi-
ble silhouette edges (including the partly visible
ones), ratio of silhouette edges and visible silhou-
ette edges after visibility determination about dif-
ferent models. From these numbers, we can know
the model size and have a overview of algorithm
complexity. o

We compare the time and space complexity of
our algorithm with other algorithms in Table 2. For
Apple’s algorithm, it checks all the edges when
considering the visibility of each edge, so the time
complexity is O(eCount’), where eCount is the
number of edges. Our hybrid method improves
Isenberg’s algorithm by exactly comparison in-
stead of check the 8-neighbours. This results in
a better rendering result. And the time complexity
is also O{eCount), since we do the same process
to generate visible silhouette lines.

Fig. 6 shows some heritage models and their
rendering results of visible silhouette. Fig. 7 is the
final vector images of our algorithm. we can en-
large to measure the detail features or zoom out
to measure the model size, which can be used di-

Table 1. Number information of models in our experiment

Model Vertices Faces Edges Sigl;;;tte Si\lﬁzilbelfte Sil/Edges % | Visib/Sil %
Vase 530,614 1,061,222 1,591,834 86,820 29,209 545 33.64
Totem 496,953 993,902 1,490,853 285,236 11,4893 19.13 40.28
Sculpture 399,774 799,548 1,199,322 35,138 20,065 293 57.10
Diagrams 249,284 498,708 748,062 51,778 30,527 6.92 58.96
Tortoise 206,127 412,250 618,375 48,290 19,528 7.81 40.44
Knife 181,515 363,018 544,527 10,798 4,034 10.98 37.36
Characters 35,958 71,916 107,874 7,259 6,064 6.73 83.53
Bunny 34,834 69,451 104,176 6,339 5,983 6.08 94.34

A Hybrid Visibility Determination Method to Get Vector Silhouette 761

Table 2. Conclusion by comparing with classic algorithms (eCount is the number of edges)

Appel's algorithm | Markosian’s hybrid | Isenberg’s hybrid | Image Space My hybrid
in object space[d] | a}gqﬁthm[Q] - algorithm[10] Algorithms|[1] algorithm
Ilme. O(eCount?) O(eCount) O(eCount) In teract.lve O(eCount)
complexity in realtime
Cannot guarantee all
Accurac All visible vector visible vector Disconnected Pixel All visible vector
acy silhouette edges silhouette edges, lines matrix silhouette edges
and disconnected lines

(a) Totem (b) Diagram

Fig. 6. Heritage models and their visible silhouette rendering results

(a) Chinese character and its zoom-in part (b) Vase and its zoom-in part

Fig. 7. Vector Silhouette Images.

(a) Teapot model (b) Isenberg's algorithm (c) Our algorithm

Fig. 8. Compare to Isenberg's algorithm (10)

rectly in industry engineering. it with our silhouette extraction scheme. In Fig. 8,
We have focused our effort on optimizing the compare region A, B in (b) and region A’, B’ in
rendering results. We implemented Isenberg’s al- (c) separately, obviously our algorithm has a better

gorithm to extract silhouette, in order to compare rendering result, since the disconnected lines is not

762 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 6, JUNE 2008

allowed in generating blueprint. Both our algorithm
and Isenberg’s algorithm have same pixel

accuracy.

5. CONCLUSION AND FUTURE WORK

We have shown the framework to extract visible
silhouette from heritage models for generating
blueprint. And we proposed a new hybrid method
to do visibility determination with three depth buf-
fers to generate analytic description of visible sil-
houette lines.

We use z-buffer but produce 3D data in object
space. We consider the visibility of each pixel on
a silhouette line. The line and triangle have differ—
ent drawing methods, which leads to different
depth values and different projected pixels posi-
tions in z-buffer. We use a method with three
depth buffers to overcome this problem. Instead of
comparing the z-buffer values of an edge and the
z-buffer value of mesh model, we compare be-
tween an adjacent face and mesh model. We have
tested several mesh models with our method to
verify the efficiency. We can guarantee that all
visible silhouette edges will be found. The vector
silhouette extracted using our method is robust,
even enlarging the vector data many times, there
are no disconnected lines.

Our hybrid method improves Isenberg’s algo-
rithm by exactly comparison instead of check the
8-neighbours. We got a better rendering result
which has no disconnected lines compare to
Isenberg’s algorithm. Both algorithms have the
same time complexity, which is O(eCount), since
we do the same process to generate visible silhou—
ette lines, eCount is the number of edges of model.

Since our algorithm is a hybrid algorithm, the
vector silhouette accuracy relates to the window
resolution. We will use more precise windows res—
olution in the rasterization process to improve the
precision of our method. In the future, we will use
our visible silhouette extraction method to do more

work about NPR.

REFERENCES

[1] T. Isenberg, B. Freudenberg, N. Halper, S.
Schlechtweg, and T. Strothotte, “A
Developer's Guide to Silhouette Algorithms for
Polygonal Models,” IEEE Computer Graphics
and Applications, Vol.23, No4, pp. 28-37, 2003.

[2] X. M. Ly, S. J. Eun, and T. K. Whangbo,
“Vector Silhouette Extraction for Generating
Blueprint,” In Proceedings of the IEEE
International Conference on Automation and
Logistics, pp. 2946-2951, 2007.

[3] Eric Lengyesl, “3D Game Programming &
Computer Graphics,” Charles River Media,
2001.

[4] A. Hertzmann and D. Zorin, “Illustrating
Smooth Surfaces,” In Proceedings of ACM
SIGGRAPH 2000 Computer
Proceedings, pp. 517-526, 2000.

[5] A. Appel, “The Notion of Quantitative
Invisibility and the Machine Rendering of
Solids,” In Proceedings of ACM National
Conference, pp. 387-393, 1967.

[6]1 Bruce Gooch, Peter-Pike J. Sloan, Amy
Gooch, Peter Shirley, and Richard Riesenfeld,
“Interactive Technical Illustration,” In
Proceedings of 1999 Symposium on
Interactive 3D Graphics, pp. 31-38, 1999.

[7]1 J. W. Buchanan, M. C. Sousa, “The Edge
Buffer: A Data Structure for Easy Silhouette
Rendering,” In Proceeding of First International
Symposium on Non Photorealistic Animation
and Rendering (NPAR), pp. 39-42, 2000.

[8] R. Raskar and M. Cohen, “Image Precision
Silhouette Edges,” In Proceedings of the 1999
Symposium on Interactive 3D Graphics, pp.
135-140, 1999.

[9] L. Markosian, M. A. Kowalski, S. J. Trychin,
L. D. Bourdev, D. Goldstein, and J. F. Hughes.
“Real-Time Non-Photorealistic Rendering,”

Graphics

A Hybrid Visibility Determination Method to Get Vector Silhouette 763

In proceeding of SIGGRAPH 97, pp. 415-420,
1997.

{101 T. Isenberg, N. Halper., and T. Strothotte,
“Stylizing Silhouettes at Interactive Rates:
From Silhouette Edges to Silhouette Strokes,”
In Proceedings of Eurographics, Computer
Graphics Forum, Vol.21, No.3, pp. 249258,
2002.

[11] AutoCAD Release 12 DXF Format, “Drawing
Interchange and File Formats,” Release 12,
Copyright (¢} 1982-1990, Autodesk, Inc. 1992.

{12] R. Raskar, “Hardware Support for Non-
Photorealistic Rendering,” In Proceecdings of
SIGGRAPH Eurographics Workshop on
Graphics Hardware (HWWS), pp. 410-461,
2001.

[13] D. Blythe, B. Grantham, S. Nelson, and T.
Mcreynolds, “Advanced Graphic Programm-
ing Techniques using OpenGL,” In proceed-
ings of International Conference on Computa-
tional Science and its Applications
(ICCSAZ2004), pp. 247-256, 2004.

[14] “Basic Line
http://www.opengl.org/documentation/specs
/versionl.l/glspecl.l/noded7 html

Segment Rasterization,”

Xuemei Lu

She received her B.S degree
from Sandong University,
Sandong, China in 2005. And she
received her M.S. degree from
Kyungwon University in
Seongnam, Korea in 2007. She is
currently a Ph.D. degree student
of the Dept. of Computer Science in Kyungwon
University, Korea. Her research interests include Level
of Detail, Point-based Rendering, Non-Photorealistic
Rendering.

Kijung Lee

He received his M.S. and Ph.D,
degrees from Kyungwon Uni-
versity, Korea in 2003 and 2008.
He is currently a researcher of
CTI of Kyungwon University,
Korea. His research iaterests
include 3D Game Engine,
Point-based Rendering, Non-Photorealistic Rendering.

Taegkeun Whangbo

tle received his Ph.D. degree
from Stevens Institute of
Technology, USA in 1995. He is
currently a professor of Dept. of
Computer Media in Kyungwon
University, Korea. His research
interests include 3D Game
Engine, Level of Detail, Physical Rendering.

