DOI QR코드

DOI QR Code

V-I Curves of p-ZnO:Al/n-ZnO:Al Junction Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie (School of Electrical, Electronic and Information Engineering, Wriss, Wonkwang University) ;
  • Jeong, Yun-Hwan (School of Electrical, Electronic and Information Engineering, Wriss, Wonkwang University) ;
  • Park, Choon-Bae (School of Electrical, Electronic and Information Engineering, Wriss, Wonkwang University)
  • Published : 2008.06.01

Abstract

Al-doped p-type ZnO films were fabricated on n-Si (100) and homo-buffer layers in pure oxygen at $450^{\circ}C$ of by RF magnetron sputtering. Target was ZnO ceramic mixed with 2 wt% $Al_2O_3$. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure and homo-buffer layers are beneficial to Al-doped ZnO films to grow along c-axis. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are ranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-3}$, mobilities from 0.194 to $2.3\;cm^2V^{-1}s^{-1}$ and resistivities from 7.97 to $18.4\;{\Omega}cm$. p-type sample has density of $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. XPS spectra show that Ols has O-O and Zn-O structures and Al2p has only Al-O structure. P-ZnO:Al/n-ZnO:Al junctions were fabricated by magnetron sputtering. V-I curves show that the p-n junctions have rectifying characteristics.

Keywords

References

  1. M. A. Lucio-Lopez, M. A. Luna-Arias, A. Maldonado, M. De la L. Olvera, and D. R. Acosta, "Preparation of conducting and transparent indium-doped ZnO thin films by chemical spray", Sol. Energy Mater. Sol. Cells, Vol. 90, No. 6, p. 733, 2006 https://doi.org/10.1016/j.solmat.2005.04.010
  2. J. N. Due, T. A. Gessert, D. M. Wood, D. L. Young, and T. J. Coutts, "Effects of hydrogen content in sputtering ambient on ZnO:Al electrical properties", J. Non-Cryst. Solids, Vol. 354, No. 19-25, p. 2787, 2008 https://doi.org/10.1016/j.jnoncrysol.2007.10.070
  3. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Kionuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO", Nat. Mater., Vol. 4, No. 1, p. 42, 2005 https://doi.org/10.1038/nmat1284
  4. J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, "UV electroluminescence emission from ZnO light-emitting diodes grown by high temperature radio frequency sputtering", Adv. Mater., Vol. 18, No. 21, p. 2720, 2006 https://doi.org/10.1002/adma.200502633
  5. J. Bian, W. Liu, J. Sun, and H. Liang, "Synthesis and defect-related emission of ZnO based light emitting device with homo- and heterostructure", J. Mater. Processing Technology, Vol. 184, No. 1-3, p. 451, 2007 https://doi.org/10.1016/j.jmatprotec.2006.12.011
  6. Y. R. Ryu, T.-S. Lee, J. A. Lubguban, H. W. White, J.-J. Kim, Y.-S. Park, and C.-J. Youn, "Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes", Appl. Phys. Lett., Vol. 88, No. 24, p. 241108, 2006 https://doi.org/10.1063/1.2210452
  7. Y. J. Zeng, Z.-Z. Ye, W.-Z. Xu, L.-L. Chen, D.-Y. Li, L.-P. Zhu, B.-H. Zhao, and Y.-L. Hu, "Realization of p-type ZnO films via monodoping of Li acceptor", J. Cryst. Growth, Vol. 283, No. 1-2, p. 180, 2005 https://doi.org/10.1016/j.jcrysgro.2005.05.071
  8. H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, H. Lim, H. W. Chang, and S. Y. Lee, "Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant", Appl. Phys. Lett., Vol. 88, No. 20, p. 202108, 2006 https://doi.org/10.1063/1.2203952
  9. B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, and X. W. Fan, "Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering", J. Appl. Phys., Vol. 99, No. 12, p. 12351, 2006
  10. S.-J. So and C.-B. Park, "Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of p-type ZnO thin films", J. Cryst. Growth, Vol. 285, No. 4, p. 606, 2005 https://doi.org/10.1016/j.jcrysgro.2005.09.018
  11. V. Vaithianathan, Y. H. Lee, B.-T. Lee, S. Hishta, and S. S. Kim, "Doping of As, P and N in laser deposited ZnO films", J. Cryst. Growth, Vol. 287, No. 1, p. 85, 2006 https://doi.org/10.1016/j.jcrysgro.2005.10.048
  12. D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, "As-doped p-type ZnO produced by an evaporation/sputtering process", Appl. Phys. Lett., Vol. 85, No. 22, p. 5269, 2004 https://doi.org/10.1063/1.1825615
  13. C. H. Park, S. B. Zhang, and S.-H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective", Phys. Rev. B, Vol. 66, No. 7, p. 073202, 2002 https://doi.org/10.1103/PhysRevB.66.073202
  14. Y. R. Ryu, T. S. Lee, and H. W. White, "Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition", Appl. Phys. Lett., Vol. 83, No. 1, p. 87, 2003 https://doi.org/10.1063/1.1590423
  15. F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyemann, "High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy", Appl. Phys. Lett., Vol. 87, No. 15, p. 152101, 2005 https://doi.org/10.1063/1.2089183
  16. S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, "Doping by large- size-mismatched impurities: The microscopic origin of arsenic or antimony-doped p-type zinc oxide", Phys. Rev. Lett., Vol. 92, No. 15, p. 155504, 2004 https://doi.org/10.1103/PhysRevLett.92.155504
  17. L. G. Wang and Alex Zunger, "Cluster- doping approach for wide-gap semiconductors: The case of p-type ZnO", Phys. Rev. Lett., Vol. 90, No. 25, p. 256401, 2003 https://doi.org/10.1103/PhysRevLett.90.256401
  18. Y. Igasaki and H. Saito, "The effects of deposition rate on the structural and electrical properties of ZnO:Al fims deposited on (11-20) oriented sapphire substrates", J. Appl. Phys., Vol. 70, No. 7, p. 3613, 1991 https://doi.org/10.1063/1.349258
  19. T. Hauser, E. Friedland and S. R. Naidoo, "Study of the diffusion behaviour of aluminium in silicon up to $900\;^{\circ}C$ by nuclear reaction analysis", Nucl. Instrum. Methods Phys. Res., Sect. B, Vol. 161-163, p. 656, 2000