Functionalization of Isoflavones with Enzymes

  • Lee, Jae-Hwan (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Doo, Eun-Hee (Department of Food Science and Technology, Ewha Womans University) ;
  • Kwon, Dae-Yong (Food Functional Research Division, Korea Food Research Institute) ;
  • Park, Jin-Byung (Department of Food Science and Technology, Ewha Womans University)
  • Published : 2008.04.30

Abstract

Considerable progress has been made in functionalization of the soy isoflavones through enzymatic modification of daidzin, genistin, and glycitin. After hydrolysis of $\beta$-glucosides into their corresponding aglycones, these compounds were structurally modified via biotransformations such as regioselective hydroxylation, enantioselective reduction, regioselective methylation, and polymerization. These reactions often resulted in an increase of the biological activities (e.g., anti oxidative activity, antiproliferative activity) and/or improvement of the physico-chemcial properties (e.g., water solubility, bioavailability). This review briefly summarizes on-going research activities on the biofunctionalization of the soy isoflavones.

Keywords

References

  1. Eldridge A, Kwolek W. Soybean isoflavones: Effect of environment and variety on composition. J. Agr. Food Chem. 31: 394-396 (1983) https://doi.org/10.1021/jf00116a052
  2. Shahidi F, Naczk M. Phenolic compounds of major oilseeds and plant oils. pp. 83-130. In: Phenolics in Food and Nutraceuticals. Shahidi F, Naczk M (eds). CRC Press, Inc., Boca Raton, FL, USA (2004)
  3. Hoeck J, Fehr W, Murphy P, Welke G. Influence of geneotype and environment on isoflavone contents of soybean. Crop Sci. 40: 48-51 (2000) https://doi.org/10.2135/cropsci2000.40148x
  4. Lozovaya V, Lygin A, Ulanov A, Nelson R, Dayde J, Widhohn J. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 45: 1934-1940 (2005) https://doi.org/10.2135/cropsci2004.0567
  5. Lee J, Renita M, Pioritto R, Martin S, Vodovotz Y. Isoflavone characterization and antioxidant activity of Ohio soybeans. J. Agr. Food Chem. 52: 2647-2651 (2004) https://doi.org/10.1021/jf035426m
  6. Shimoni E. Stability and shelf life of bioactive compounds during food processing and storage: Soy isoflavone. J. Food Sci. 69: 160-166 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb11005.x
  7. Uzzan M, Labuza T. Critical issues in R&D of soy isoflavone enriched foods and dietary supplements. J. Food Sci. 69: 77-86 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb13345.x
  8. Hendrich S, Wang G, Lin H, Xu X, Tew B, Wang H, Murphy P. Isoflavone metabolism and bioavailability. pp. 211-230. In: Antioxidant Status, Diet, Nutrition, and Health. Papas A (ed). CRC Press, Inc., Boca Raton, FL, USA (1999)
  9. Ishimi Y, Yoshida M, Wakimoto S, Wu J, Chiba H, Wang X, Takeda K, Miyaura C. Genistein, a soybean isoflavone, affects bone marrow lymphopoiesis and prevents bone loss in castrated male mice. Bone 31: 180-185 (2002) https://doi.org/10.1016/S8756-3282(02)00780-9
  10. Zheng G, Zhu S. Antioxidant effects of soybean isoflavones. pp. 123-130. In: Antioxidants in Human Health and Disease. Basu T, Temple N, Garg M (eds). CABI Publishing, Wallingford, UK (1999)
  11. Kwon D, Jang J, Lee J, Kim Y-S, Shin D-H, Park S. The isoflavonoid aglycone-rich fractions of cheonggukjang, fermented unsalted soybeans, enhance insulin signaling, and peroxisome proliferator-activated $receptor-{\gamma}$ activity in vitro. Biofactors 26: 245-258 (2006) https://doi.org/10.1002/biof.5520260403
  12. Izumi T, Piskula M, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucoside in humans. J. Nutr. 130: 1695-1699 (2000)
  13. Jang C, Lim J, Kim J, Park C, Kwon D, Kim Y-S, Shin D, Kim J-S. Change of isoflavone content during manufacturing of cheonggukjang, a traditional Korean fermented soyfood. Food Sci. Biotechnol. 15: 643-646 (2006)
  14. Yang S, Chang P-S, Lee J. Isoflavone distribution and betaglucosidase activity in cheonggukjang, a traditional Korean whole soybean-fermented food. Food Sci. Biotechnol. 15: 96-101 (2006)
  15. Tsangalis D, Ashton JF, Stojanovska L, Wilcox G, Shah N. Development of an isoflavone aglycone-enriched soymilk using soy germ, soy protein isolate and bifidobacteria. Food Res. Int. 37: 301-312 (2004) https://doi.org/10.1016/j.foodres.2004.01.003
  16. Ismail B, Hayes K. ${\beta}-Glycosidase$ activity toward different glycosidic forms of isoflavones. J. Agr. Food Chem. 53: 4918-4924 (2005) https://doi.org/10.1021/jf0404694
  17. Yang S, Chang P-S, Baek B, Hong S, Lee J. Changes of isoflavone distribution in soybeans using almond powder. Korean J. Food Sci. Technol. 39: 231-236 (2007)
  18. Esaki H, Kawakishi S, Morimitsu Y, Osawa T. New potent antioxidative O-dihydroxyisoflavones in fermented Japanese soybean products. Biosci. Biotech. Bioch. 63: 1637-1639 (1999) https://doi.org/10.1271/bbb.63.1637
  19. Esaki H, Osawa T, Kawakishi S. Potent antioxidative O-dihydroxyisoflavones in soy sauces and their antioxidative activities. J. Jpn. Soc. Food Sci. Technol. 49: 476-483 (2002) https://doi.org/10.3136/nskkk.49.476
  20. Hirota A, Inaba M, Chen YC, Abe N, Taki S, Yano M, Kawaii S. Isolation of 8-hydroxyglycitein and 6-hydroxydaidzein from soybean miso. Biosci. Biotech. Bioch. 68: 1372-1374 (2004) https://doi.org/10.1271/bbb.68.1372
  21. Esaki H, Watanabe R, Onozaki H, Kawakishi S, Osawa T. Formation mechanism for potent antioxidative O-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi. Biosci. Biotech. Bioch. 63: 851-858 (1999) https://doi.org/10.1271/bbb.63.851
  22. Seeger M, Gonzalez M, Camara B, Munoz L, Ponce E, Mejias L, Mascayano C, Vasquez Y, Sepulveda-Boza S. Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Appl. Environ. Microb. 69: 5045-5050 (2003) https://doi.org/10.1128/AEM.69.9.5045-5050.2003
  23. Klus K, Barz W. Formation of polyhydroxylated isoflavones from the isoflavones genistein and biochanin A by bacteria isolated from tempe. Phytochemistry 47: 1045-1048 (1998) https://doi.org/10.1016/S0031-9422(97)00648-1
  24. Klus K, Barz W. Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch. Microbiol. 164: 428-434 (1995) https://doi.org/10.1007/BF02529741
  25. Borriello SP, Setchell KDR, Axelson M, Lawson AM. Production and metabolism of lignans by the human fecal flora. J. Appl. Bacteriol. 58: 37-43 (1985) https://doi.org/10.1111/j.1365-2672.1985.tb01427.x
  26. Sathyamoorthy N, Wang TTY. Differential effects of dietary phytooestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur. J. Cancer. 33: 2384-2389 (1997) https://doi.org/10.1016/S0959-8049(97)00303-1
  27. Wang XL, Kim HJ, Kang SI, Kim SI, Hur HG. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch. Microbiol. 187: 155-160 (2007) https://doi.org/10.1007/s00203-006-0183-8
  28. French CE, Bruce NC. Bacterial morphinone reductase is related to old yellow enzyme. Biochem. J. 312: 671-678 (1995) https://doi.org/10.1042/bj3120671
  29. Minamida K, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K. Production of equol from daidzein by Gram-positive rod-shaped bacterium isolated from rat intestine. J. Biosci. Bioeng. 102: 247-250 (2006) https://doi.org/10.1263/jbb.102.247
  30. Sperry JF, Wilkins TD. Arginine, a growth-limiting factor for Eubacterium lentum. J. Bacteriol. 127: 780-784 (1976)
  31. He XZ, Reddy JT, Dixon RA. Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitorinducible isoflavone 7-O-methyltransferase. Plant Mol. Biol. 36: 43-54 (1998) https://doi.org/10.1023/A:1005938121453
  32. Ibrahim RK, Bruneau A, Bantignies B. Plant O-methyltransferases: Molecular analysis, common signature, and classification. Plant Mol. Biol. 36: 1-10 (1998) https://doi.org/10.1023/A:1005939803300
  33. Kim BG, Jung BR, Lee Y, Hur HG, Lim Y, Ahn JH. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. J. Agr. Food Chem. 54: 823-828 (2006) https://doi.org/10.1021/jf0522715
  34. Kim BG, Kim H, Hur HG, Lim Y, Ahn JH. Regioselectivity of 7-Omethyltransferase of poplar to flavones. J. Biotechnol. 126: 241-247 (2006) https://doi.org/10.1016/j.jbiotec.2006.04.019
  35. Kim DH, Kim BG, Lee Y, Ryu JY, Lim Y, Hur HG, Ahn JH. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J. Biotechnol. 119: 155-162 (2005) https://doi.org/10.1016/j.jbiotec.2005.04.004
  36. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493 (2001) https://doi.org/10.1104/pp.126.2.485
  37. Desentis-Mendoza, Hernandez-Sanchez RMH, Moreno A, Emilio RDC, Chel-Guerrero L, Tamariz J, Jaramillo-Flores ME. Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from Ustilago maydis. Biomacromolecules 7: 1845-1854 (2006) https://doi.org/10.1021/bm060159p
  38. Ariga T. The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors 21: 197-201 (2004) https://doi.org/10.1002/biof.552210140
  39. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 46: 1887-1892 (1998)
  40. Saito M, Hosoyama H, Ariga T, Kataoka S, Yamaji N. Antiulcer activity of grape seed extract and procyanidins. J. Agr. Food Chem. 46: 1460-1464 (1998) https://doi.org/10.1021/jf9709156
  41. Mejias L, Reihmann MH, Sepulveda-Boza S, Ritter H. New polymers from natural phenols using horseradish or soybean peroxidase. Macromol. Biosci. 2: 24-32 (2002) https://doi.org/10.1002/1616-5195(20020101)2:1<24::AID-MABI24>3.0.CO;2-6
  42. Shimakage A, Shinbo M, Yamada S, Ito H. Changes in isoflavone content in soybeans during the manufacturing processes of tubunatto and hikiwari-natto. J. Jpn. Soc. Food Sci. Technol. 53: 185-188 (2006) https://doi.org/10.3136/nskkk.53.185
  43. Toda T, Uesugi T, Hirai K, Nukaya H, Tsuji K, Ishida H. New 6-Oacyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-Succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calciumdeficient diet. Biol. Pharm. Bull. 22: 1193-1201 (1999) https://doi.org/10.1248/bpb.22.1193
  44. Yang S, Lee S, Lee S, Chang P-S, Choi S-S, Lee J. Succinyl daidzin and succinyl genistin are new isoflavone derivatives found in cheonggukjang. Food Sci. Biotechnol. 17: in press (2008)
  45. Kataoka S. Functional effects of Japanese style fermented soy sauce (shoyu) and its components. J. Biosci. Bioeng. 100: 227-234 (2005) https://doi.org/10.1263/jbb.100.227
  46. Kinoshita E, Ozawa Y, Aishima T. Novel tartaric acid isoflavone derivatives that play key roles in differentiating Japanese soy sauces. J. Agr. Food Chem. 45: 3753-3759 (1997) https://doi.org/10.1021/jf9702095