Anti-lipogenic Effects of Tannic Acid in 3T3-L1 Adipocytes and in High Fat Diet-fed Rats

  • Kim, Hyun-Ju (Department of Food Science and Nutrition/Kimchi Research Institute, Pusan National University) ;
  • Yun, Ye-Rang (Department of Food Science and Nutrition/Kimchi Research Institute, Pusan National University) ;
  • Song, Yeong-Bok (Sejeon Food Research Institute, Sejeon Co., Ltd.) ;
  • Song, Yeong-Ok (Department of Food Science and Nutrition/Kimchi Research Institute, Pusan National University)
  • Published : 2008.04.30

Abstract

Anti-lipogenic effects of tannic acid on 3T3-L1 adipocytes as well as on rats fed high fat diet (HFD) were investigated. Tannic acid stimulated lipolysis through suppression of the leptin secretion and an increase of glycerol release in a dose dependent manner in 3T3-L1 adipocytes. For animal study, the rats were fed either HFD or HFD supplemented with 1%(w/w) tannic acid (HFDT) for 12 weeks, respectively. Body weight gain, liver weight, and visceral fat mass in rats fed HFDT were significantly decreased compared to those of rats fed HFD. The lipid profiles of HFDT group were significantly decreased compared with HFD group in the serum and liver, whereas fecal total cholesterol excretion was increased in HFDT group. These results suggest that anti-lipogenic effect of tannic acid in 3T3-L1 adipocytes and in rats fed HFD may be due to the stimulation of lipolysis and the reduction of lipid levels.

Keywords

References

  1. Kopelman PG. Obesity as a medical problem. Nature 404: 635-643 (2002)
  2. Hertog MG, Feskens EJ, Kromhout D. Antioxidant flavonols and coronary heart disease risk. Lancet 349: 699 (1997)
  3. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: A cohort study. Brit. Med. J. 312: 478-481 (1996) https://doi.org/10.1136/bmj.312.7029.478
  4. Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J. Nutr. 132: 1819-1824 (2002)
  5. Mochizuki M, Hasegawa N. Effects of green tea catechin-induced lipolysis on cytosol glycerol content in differentiated 3T3-L1 cells. Phytother. Res. 18: 945-946 (2004) https://doi.org/10.1002/ptr.1580
  6. Ong KC, Khoo HE, Das NP. Tannic acid inhibits insulin-stimulated lipogenesis in rat adipose tissue and insulin receptor function in vitro. Experientia 51: 577-584 (1995) https://doi.org/10.1007/BF02128747
  7. Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr. 135: 165-171 (2005)
  8. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of $PPAR{\gamma}2$ and $C/EBP{\alpha}$ in 3T3-L1 cells. Biosci. Biotech. Bioch. 68: 2353-2359 (2004) https://doi.org/10.1271/bbb.68.2353
  9. Yugarani T, Tan BKH, Das NP. Effects of polyphenolic natural products on the lipid profiles of rats fed high fat diets. Lipids 27: 181-186 (1992) https://doi.org/10.1007/BF02536175
  10. Jensen MD. Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human Model. Obesity 14: 20S-24S (2006)
  11. Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol. Res. 53: 482-491 (2006) https://doi.org/10.1016/j.phrs.2006.03.009
  12. Carmen GY, Víctor SM. Signalling mechanisms regulating lipolysis. Cell. Signal. 18: 401-408 (2006) https://doi.org/10.1016/j.cellsig.2005.08.009
  13. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, Arner E, Sicard A, Jenkins CM, Viguerie N, van Harmelen V, Gross RW, Holm C, Arner P. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54: 3190-3197 (2005) https://doi.org/10.2337/diabetes.54.11.3190
  14. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395: 763-770 (1998) https://doi.org/10.1038/27376
  15. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1: 1155-1161 (1995) https://doi.org/10.1038/nm1195-1155
  16. Correia ML, Haynes WG. Leptin, obesity, and cardiovascular disease. Curr. Opin. Nephrol. Hy. 13: 215-223 (2004) https://doi.org/10.1097/00041552-200403000-00010
  17. Lonnqvist F, Nordfors L, Jansson M, Thörne A, Schalling M, Arner P. Leptin secretion from adipose tissue in women. Relationship to plasma levels and gene expression. J. Clin. Invest. 99: 2398-2404 (1997) https://doi.org/10.1172/JCI119422
  18. Shintani M, Nishimura H, Yonemitsu S, Masuzaki H, Ogawa Y, Hosoda K, Inoue G, Yoshimasa Y, Nakao K. Downregulation of leptin by free fatty acids in rat adipocytes: Effects of triacsin C, palmitate, and 2-bromopalmitate. Metab. Clin. Exp. 49: 326-330 (2000) https://doi.org/10.1016/S0026-0495(00)90154-9
  19. Okuda T, Yoshida T, Hatano T. Hydrolyzable tannins and related polyphenols. Fort. Chem. Org. Nat. 66: 1-117 (1995)
  20. Marienfeld C, Tadlock L, Yamagiwa Y, Patel T. Inhibition of cholangiocarcinoma growth by tannic acid. Hepatology 37: 1097-1104 (2003) https://doi.org/10.1053/jhep.2003.50192
  21. Sasaki YF, Matsumoto K, Imanishi H, Watanabe M, Ohta T, Shirasu Y, Tutikawa K. In vivo anticlastogenic and antimutagenic effects of tannic acid in mice. Mutat. Res. 244: 43-47 (1990) https://doi.org/10.1016/0165-7992(90)90106-T
  22. Hagerman AE, Riedl KM, Jones JA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food. Chem. 46: 1887-1892 (1998) https://doi.org/10.1021/jf970975b
  23. Choi JM, Han J, Yoon BS, Chung JH, Shin DB, Lee SK, Hwang JK, Ryang R. Antioxidant properties of tannic acid and its inhibitory effects on paraquat-induced oxidative stress in mice. Food Sci. Biotechnol. 15: 728-734 (2006)
  24. Pinent M, Bladé MC, Salvadó MJ, Arola L, Hackl H, Quackenbush J, Trajanoski Z, Ardévol A. Grape-seed derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of differentiation. Int. J. Obesity 29: 934-941 (2005) https://doi.org/10.1038/sj.ijo.0802988
  25. Ardevol A, Blade C, Salvado MJ, Arola L. Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3- L1 adipocytes. Int. J. Obes. Relat. Metab. Disord. 24: 319-324 (2000) https://doi.org/10.1038/sj.ijo.0801130
  26. Friedwald WT, Levy RI, Fradrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502 (1972)
  27. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226: 497-509 (1957)
  28. Leibowitz SF, Chang GQ, Dourmashkin JT, Yun R, Julien C, Pamy PP. Leptin secretion after a high-fat meal in normal-weight rats: Strong predictor of long-term body fat accrual on a high-fat diet. Am. J. Physiol.-Endoc. M. 290: E258-E267 (2006)
  29. Szkudelski T, Nogowski L, Pruszyñska-Oszmalek E, Kaczmarek P, Szkudelska K. Genistein restricts leptin secretion from rat adipocytes. J. Steroid. Biochem. 96: 301-307 (2005) https://doi.org/10.1016/j.jsbmb.2005.04.033
  30. Taylor SI, Barr V, Reitman M. Does leptin contribute to diabetes caused by obesity? Science 274: 1151-1160 (1996) https://doi.org/10.1126/science.274.5290.1151
  31. Havel PJ, Kasim-Karakas S, Mueller WM, Johnson PR, Gingerich RL, Stern JS. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: Effects of dietary fat content and sustained weight loss. J. Clin. Endoc. M. 8:4406-4413 (1996)
  32. Moreno-Aliaga MJ, Martínez JA, Stanhope KL, Fernández-Otero MP, Havel PJ. Effects of Trecadrine, a beta3-adrenergic agonist, on leptin secretion, glucose, and lipid metabolism in isolated rat adipocytes. Int. J. Obesity 26: 912-919 (2002) https://doi.org/10.1038/sj.ijo.0802003
  33. Klaus S, Pültz S, Thöne-Reineke C, Wolfram S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int. J. Obesity 29: 615-623 (2005) https://doi.org/10.1038/sj.ijo.0802926
  34. Kim KJ, Lee OH, Lee HC, Kim YC, Lee BY. Effect of fucoidan on expression of diabetes mellitus related genes in mouse adipocytes. Food Sci. Biotechnol. 16: 212-217 (2007)
  35. Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS. $PPAR${\gamma}${\gamma}$ regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am. J. Physiol.-Endoc. M. 293: E1736-E1745 (2007)
  36. Han D, Kwon EK, Kim DW, Kim YE, Lee CH, Kim IH. Biocellulose reduces body weight gain of rats fed high-fat diet. Food Sci. Biotechnol. 15: 70-76 (2007)
  37. Moreno DA, Ilic N, Poulev A, Raskin I. Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters. Life Sci. 78: 2797-2803 (2006) https://doi.org/10.1016/j.lfs.2005.11.012
  38. Yun YR, Kim MJ, Kwon MJ, Kim HJ, Song YB, Song KB, Song YO. Lipid-lowering effect of hot water-soluble extracts of Saururus chinensis Bail on rats fed high fat diets. J. Med. Food. 10: 320-326 (2007)
  39. Gebhardt R. Variable influence of kaempferol and myricetin on in vitro hepatocellular cholesterol biosynthesis. Planta Med. 69: 1071-1074 (2003) https://doi.org/10.1055/s-2003-45184
  40. Li BH, Tian WX. Inhibitory effects of flavonoids on animal fatty acid synthase. J. Biochem. 135: 85-91 (2004) https://doi.org/10.1093/jb/mvh010
  41. Horigome T, Kumar R, Okamoto K. Effect of condensed tannins prepared from leaves of fodder plants on digestive enzymes in vitro and in the intestine of rats. Brit. J. Nutr. 60: 275-285 (1988) https://doi.org/10.1079/BJN19880099
  42. Lei F, Zhang XN, Wang W, Xing DM, Xie WD, Su H, Du LJ. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int. J. Obesity 31: 1023-1029 (2007) https://doi.org/10.1038/sj.ijo.0803502
  43. Tebib K, Besancon P, Rouanet JM. Dietary grape seed tannins affect lipoproteins, lipoprotein lipases, and tissue lipids in rats fed hypercholesterolemic diets. J. Nutr. 124: 2451-2457 (1994)